{"title":"Soil Carbon-to-Nitrogen Ratio Can Predict the Grassland Biodiversity-Productivity Relationship: Evidence From Local, Regional, and Global Scales","authors":"Hongjin Zhang, Lin Jiang, Wei Wang","doi":"10.1111/gcb.70518","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil elemental stoichiometry serves as an inherent link between soil biogeochemistry and the structure and processes within plant communities, and thus is at the core of ecosystem functions. Yet, the regulatory role of soil stoichiometry, particularly the carbon-to-nitrogen (C:N) ratio, in shaping biodiversity-productivity relationships remains poorly understood. By integrating data from our regional field surveys (58 sites) and a local complementary N addition experiment in temperate grasslands, together with a global grassland dataset (74 sites), here we showed that plant productivity exhibited a unimodal response to increasing soil C:N ratios, with peaking values at the C:N ratio of approximately 15. At this critical value, the determinants driving grassland productivity undergo a fundamental shift: below the soil C:N of 15, plant diversity was positively related to productivity, while above this threshold, bacterial and fungal diversity showed a positive linkage with plant productivity. This divergence implies a stoichiometric “switch” in biodiversity-productivity relationships: high soil C:N ratios strengthen the reliance of productivity on soil bacterial and fungal diversity to mitigate N deficiency, while low C:N ratios shift the emphasis to plant diversity to exploit resource-rich environments. Our findings highlight that soil stoichiometry can predict biodiversity-productivity relationships, with important implications for grassland restoration and management.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70518","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Soil elemental stoichiometry serves as an inherent link between soil biogeochemistry and the structure and processes within plant communities, and thus is at the core of ecosystem functions. Yet, the regulatory role of soil stoichiometry, particularly the carbon-to-nitrogen (C:N) ratio, in shaping biodiversity-productivity relationships remains poorly understood. By integrating data from our regional field surveys (58 sites) and a local complementary N addition experiment in temperate grasslands, together with a global grassland dataset (74 sites), here we showed that plant productivity exhibited a unimodal response to increasing soil C:N ratios, with peaking values at the C:N ratio of approximately 15. At this critical value, the determinants driving grassland productivity undergo a fundamental shift: below the soil C:N of 15, plant diversity was positively related to productivity, while above this threshold, bacterial and fungal diversity showed a positive linkage with plant productivity. This divergence implies a stoichiometric “switch” in biodiversity-productivity relationships: high soil C:N ratios strengthen the reliance of productivity on soil bacterial and fungal diversity to mitigate N deficiency, while low C:N ratios shift the emphasis to plant diversity to exploit resource-rich environments. Our findings highlight that soil stoichiometry can predict biodiversity-productivity relationships, with important implications for grassland restoration and management.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.