Methanol-Induced Surface Homogenization of ZnO for High-Performance Inverted Organic Solar Cells.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-19 DOI:10.1002/cssc.202501810
Fenghua Zhang, Tingting Dai, Yang Liu, Yang Zhang, Xiaojuan Dai, Denghui Xu, Ye Zou, Xiong Li
{"title":"Methanol-Induced Surface Homogenization of ZnO for High-Performance Inverted Organic Solar Cells.","authors":"Fenghua Zhang, Tingting Dai, Yang Liu, Yang Zhang, Xiaojuan Dai, Denghui Xu, Ye Zou, Xiong Li","doi":"10.1002/cssc.202501810","DOIUrl":null,"url":null,"abstract":"<p><p>The performance and stability of inverted organic solar cells (OSCs) are often limited by the inherent defects and photocatalytic activity of zinc oxide (ZnO) electron transport layers. A methanol-induced surface homogenization (MISH) strategy is proposed to simultaneously address these challenges. Through coordination and hydrogen bonding, methanol effectively passivates surface defects while suppressing the generation of hydroxyl radicals (-OH) under operational conditions. This dual-functional modification optimizes ZnO work function, enhances interfacial charge transport, and promotes a favorable vertical phase separation within the active layer. The optimized morphology effectively suppresses interfacial recombination while enhancing charge collection efficiency, leading to significant improvement in device performance. The inverted PM6:L8-BO-based OSCs achieve apower conversion efficiency (PCE) of 18.63% with exceptional thermal stability (T80 > 1000 h). Furthermore, the universality of the MISH strategy is demonstrated in PM6:L8-BO:BTP-eC9 ternary systems, yielding an impressive PCE of 18.85%. Comprehensive characterization, including atomic force microscopy, grazing-incidence wide-angle X-ray scattering, reveals that methanol treatment not only reduces trap states but also stabilizes molecular stacking during long-term operation. This work provides a simple and effective approach for ZnO modification, offering profound insights into interfacial engineering for high-performance and stable OSCs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501810"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501810","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance and stability of inverted organic solar cells (OSCs) are often limited by the inherent defects and photocatalytic activity of zinc oxide (ZnO) electron transport layers. A methanol-induced surface homogenization (MISH) strategy is proposed to simultaneously address these challenges. Through coordination and hydrogen bonding, methanol effectively passivates surface defects while suppressing the generation of hydroxyl radicals (-OH) under operational conditions. This dual-functional modification optimizes ZnO work function, enhances interfacial charge transport, and promotes a favorable vertical phase separation within the active layer. The optimized morphology effectively suppresses interfacial recombination while enhancing charge collection efficiency, leading to significant improvement in device performance. The inverted PM6:L8-BO-based OSCs achieve apower conversion efficiency (PCE) of 18.63% with exceptional thermal stability (T80 > 1000 h). Furthermore, the universality of the MISH strategy is demonstrated in PM6:L8-BO:BTP-eC9 ternary systems, yielding an impressive PCE of 18.85%. Comprehensive characterization, including atomic force microscopy, grazing-incidence wide-angle X-ray scattering, reveals that methanol treatment not only reduces trap states but also stabilizes molecular stacking during long-term operation. This work provides a simple and effective approach for ZnO modification, offering profound insights into interfacial engineering for high-performance and stable OSCs.

甲醇诱导ZnO表面均匀化用于高性能倒置有机太阳能电池。
倒置有机太阳能电池(OSCs)的性能和稳定性经常受到氧化锌(ZnO)电子传输层固有缺陷和光催化活性的限制。提出了一种甲醇诱导表面均质(MISH)策略来同时解决这些挑战。在操作条件下,甲醇通过配位和氢键有效钝化表面缺陷,同时抑制羟基自由基(-OH)的生成。这种双功能修饰优化了ZnO的功功能,增强了界面电荷输运,促进了活性层内良好的垂直相分离。优化后的形貌有效抑制了界面复合,同时提高了电荷收集效率,器件性能显著提高。倒置PM6: l8 - bo基OSCs实现18.63%的功率转换效率(PCE),具有出色的热稳定性(T80 > 1000 h)。此外,在PM6:L8-BO:BTP-eC9三元体系中证明了MISH策略的普遍性,产生了令人印象深刻的18.85%的PCE。综合表征,包括原子力显微镜,掠入射广角x射线散射,揭示了甲醇处理不仅减少了陷阱状态,而且在长期运行中稳定了分子堆积。该研究为ZnO改性提供了一种简单有效的方法,为高性能稳定的osc的界面工程提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信