Assimiou M. Yarou, Daniel S. Takou, Amidou Boukari, Guingarey Issoufou, Finagnon A. Dossa, Gabriel Y. H. Avossevou
{"title":"Thermodynamic properties and superstatistics of graphene under a constant magnetic field","authors":"Assimiou M. Yarou, Daniel S. Takou, Amidou Boukari, Guingarey Issoufou, Finagnon A. Dossa, Gabriel Y. H. Avossevou","doi":"10.1140/epjb/s10051-025-01042-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present the solutions of the Dirac–Weyl equation for graphene under a constant magnetic field. The resulting spectrum is used to determine the partition function, a key quantity in the study of thermodynamic properties. From this function, we analyze the mean energy, specific heat, entropy, and free energy in two different frameworks: the canonical ensemble and the superstatistical approach. The study confirms the relativistic nature of electron transport in graphene under a magnetic field. It also reveals that fluctuations introduce additional disorder in the system. The obtained results are in good agreement with those already reported in the literature.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01042-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the solutions of the Dirac–Weyl equation for graphene under a constant magnetic field. The resulting spectrum is used to determine the partition function, a key quantity in the study of thermodynamic properties. From this function, we analyze the mean energy, specific heat, entropy, and free energy in two different frameworks: the canonical ensemble and the superstatistical approach. The study confirms the relativistic nature of electron transport in graphene under a magnetic field. It also reveals that fluctuations introduce additional disorder in the system. The obtained results are in good agreement with those already reported in the literature.