Salting-enhanced polyvinyl alcohol hydrogel: synergistic effects of sodium acetate and ammonium citrate on structural and mechanical properties

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ting Wang, Zhenxin Han, Ruotong Ma, Jie Tong, Siyu Cheng, Yu Wang, Chongyang Wang, Chuang Li, Dandan Li, Guangjun Nie
{"title":"Salting-enhanced polyvinyl alcohol hydrogel: synergistic effects of sodium acetate and ammonium citrate on structural and mechanical properties","authors":"Ting Wang,&nbsp;Zhenxin Han,&nbsp;Ruotong Ma,&nbsp;Jie Tong,&nbsp;Siyu Cheng,&nbsp;Yu Wang,&nbsp;Chongyang Wang,&nbsp;Chuang Li,&nbsp;Dandan Li,&nbsp;Guangjun Nie","doi":"10.1007/s10853-025-11488-z","DOIUrl":null,"url":null,"abstract":"<div><p>Non-covalently cross-linked polyvinyl alcohol (PVA) hydrogels potentially function as promising biomaterial candidates for diverse biomedical applications. However, conventional PVA hydrogels have inherent limitations in mechanical strength that constrain their practical applications. This study develops a high-performance polyvinyl alcohol (PVA) hydrogel through dual-salt-regulation strategies involving sodium acetate (NaAc) and ammonium citrate (CAS). The in situ addition of NaAc (0.7 mol/L) induces PVA protonation, enhancing intramolecular/intermolecular hydrogen bonds (H-bonds), which elevates toughness to 1.3 MJ/m<sup>3</sup> (10 × improvement). Subsequent CAS salting-out (3 mol/L) further strengthens H-bond network and reduces crystalline domains, achieving exceptional mechanical properties: tensile stress (4.26 MPa), strain (760%), toughness (20.98 MJ/m<sup>3</sup>), and fracture energy (765.72 kJ/m<sup>2</sup>). Structural analyses confirm that NaAc disrupts PVA–water interactions, while CAS promotes dense chain packing via salting-out, collectively reducing water content from 88 to 26% and creating a hierarchical porous structure. Cyclic compression tests demonstrate outstanding fatigue resistance. The synergistic Hofmeister effect and dynamic ionic cross-linking enable energy dissipation, making this hydrogel promising for soft robotics and biomedical applications requiring robust, deformable materials.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 36","pages":"16559 - 16575"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11488-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-covalently cross-linked polyvinyl alcohol (PVA) hydrogels potentially function as promising biomaterial candidates for diverse biomedical applications. However, conventional PVA hydrogels have inherent limitations in mechanical strength that constrain their practical applications. This study develops a high-performance polyvinyl alcohol (PVA) hydrogel through dual-salt-regulation strategies involving sodium acetate (NaAc) and ammonium citrate (CAS). The in situ addition of NaAc (0.7 mol/L) induces PVA protonation, enhancing intramolecular/intermolecular hydrogen bonds (H-bonds), which elevates toughness to 1.3 MJ/m3 (10 × improvement). Subsequent CAS salting-out (3 mol/L) further strengthens H-bond network and reduces crystalline domains, achieving exceptional mechanical properties: tensile stress (4.26 MPa), strain (760%), toughness (20.98 MJ/m3), and fracture energy (765.72 kJ/m2). Structural analyses confirm that NaAc disrupts PVA–water interactions, while CAS promotes dense chain packing via salting-out, collectively reducing water content from 88 to 26% and creating a hierarchical porous structure. Cyclic compression tests demonstrate outstanding fatigue resistance. The synergistic Hofmeister effect and dynamic ionic cross-linking enable energy dissipation, making this hydrogel promising for soft robotics and biomedical applications requiring robust, deformable materials.

盐渍增强聚乙烯醇水凝胶:乙酸钠和柠檬酸铵对结构和力学性能的协同作用
非共价交联聚乙烯醇(PVA)水凝胶具有广泛的生物医学应用前景。然而,传统的PVA水凝胶在机械强度方面存在固有的局限性,这限制了它们的实际应用。本研究通过醋酸钠(NaAc)和柠檬酸铵(CAS)的双盐调节策略,开发了高性能聚乙烯醇(PVA)水凝胶。原位添加NaAc (0.7 mol/L)可诱导PVA质子化,增强分子内/分子间氢键(h -键),使韧性提高到1.3 MJ/m3(10倍)。随后的CAS盐析(3 mol/L)进一步强化了氢键网络,减少了晶域,获得了优异的力学性能:拉伸应力(4.26 MPa)、应变(760%)、韧性(20.98 MJ/m3)和断裂能(765.72 kJ/m2)。结构分析证实,NaAc破坏了pva -水的相互作用,而CAS通过盐析促进了密集的链填料,共同将含水量从88%降低到26%,并形成了分层多孔结构。循环压缩试验显示出优异的抗疲劳性能。协同霍夫迈斯特效应和动态离子交联使能量耗散,使这种水凝胶有望用于需要坚固,可变形材料的软机器人和生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信