Critical Behavior and Landau Theory in Pr0.55Sr0.45-xNaxMnO3 Manganites

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, APPLIED
W. Mabrouki, A. Krichene, W. Boujelben
{"title":"Critical Behavior and Landau Theory in Pr0.55Sr0.45-xNaxMnO3 Manganites","authors":"W. Mabrouki,&nbsp;A. Krichene,&nbsp;W. Boujelben","doi":"10.1007/s10948-025-07055-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigated the critical behavior and magnetocaloric effect of Pr<sub>0.55</sub>Sr<sub>0.45-x</sub>Na<sub>x</sub>MnO<sub>3</sub> manganites (x = 0, 0.05 and 0.1) by using critical exponent analysis and Landau theory. The study revealed that the mean-field, 3D-Heisenberg and 3D-XY models are the best for describing the magnetic interactions for x = 0, 0.05 and 0.1 samples, respectively. With increasing sodium content, the magnetic interactions display a striking change from long-range to short-range interactions, which may be ascribed to an increase in Mn<sup>4+</sup> ions concentration and magnetocrystalline anisotropy. Using Landau theory, we have confirmed that the magnetic transition around T<sub>C</sub> is of second-order. An agreement was found between the magnetic entropy change values estimated by Landau theory and those obtained using Maxwell relation for a magnetic field equal to 2 T. This confirms the validity of Landau theory to estimate the magnetocaloric effect of Pr<sub>0.55</sub>Sr<sub>0.45-x</sub>Na<sub>x</sub>MnO<sub>3</sub> samples. The small deviation obtained for our samples below T<sub>C</sub> can be attributed to the existence of magnetic disorder in the ferromagnetic phase.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-07055-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigated the critical behavior and magnetocaloric effect of Pr0.55Sr0.45-xNaxMnO3 manganites (x = 0, 0.05 and 0.1) by using critical exponent analysis and Landau theory. The study revealed that the mean-field, 3D-Heisenberg and 3D-XY models are the best for describing the magnetic interactions for x = 0, 0.05 and 0.1 samples, respectively. With increasing sodium content, the magnetic interactions display a striking change from long-range to short-range interactions, which may be ascribed to an increase in Mn4+ ions concentration and magnetocrystalline anisotropy. Using Landau theory, we have confirmed that the magnetic transition around TC is of second-order. An agreement was found between the magnetic entropy change values estimated by Landau theory and those obtained using Maxwell relation for a magnetic field equal to 2 T. This confirms the validity of Landau theory to estimate the magnetocaloric effect of Pr0.55Sr0.45-xNaxMnO3 samples. The small deviation obtained for our samples below TC can be attributed to the existence of magnetic disorder in the ferromagnetic phase.

Pr0.55Sr0.45-xNaxMnO3锰矿石的临界行为及朗道理论
本文采用临界指数分析和朗道理论研究了Pr0.55Sr0.45-xNaxMnO3锰矿石(x = 0,0.05和0.1)的临界行为和磁热效应。研究表明,平均场模型、3D-Heisenberg模型和3D-XY模型分别最适合描述x = 0、0.05和0.1样品的磁相互作用。随着钠含量的增加,磁性相互作用呈现出从远程相互作用到短程相互作用的显著变化,这可能归因于Mn4+离子浓度的增加和磁晶各向异性的增加。利用朗道理论,我们证实了TC周围的磁跃迁是二阶的。在2 t磁场下,用朗道理论估计的磁熵变值与用麦克斯韦关系计算的结果吻合,证实了朗道理论估计Pr0.55Sr0.45-xNaxMnO3样品磁热效应的有效性。我们的样品在TC以下获得的小偏差可以归因于铁磁相中存在磁性紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信