{"title":"Real-Time Digital-Twin of Thorium-Based Molten Salt Breeder Reactor for Closed-Loop Controller Testing Applications","authors":"Xinyu Zhao;Weiran Chen;Venkata Dinavahi","doi":"10.1109/TNS.2025.3596969","DOIUrl":null,"url":null,"abstract":"Molten salt breeder reactors (MSBRs), which utilize molten fluoride salts as both fuel and coolant, are currently being researched and designed worldwide, offering inherent safety features, efficient fuel utilization, and the potential for thorium-based fuel cycles. Given the advanced development status of MSBRs, real-time emulation is essential for dynamic analysis studies, accommodating more detailed models and advanced control strategies. This article proposes a real-time digital-twin (RTDT) based on a hardware-in-the-loop (HIL) emulation on a field-programmable gate array (FPGA) for a multi-domain two-fluid MSBR model with a designed controller for validation and testing. A nonlinear explicit numerical solution with an appropriate step-size and ordinary differential equation (ODE) solver is carried out in a non-iterative fashion to achieve the required accuracy and real-time execution. The MSBR hardware emulation and closed-loop controller tests have been implemented on the parallel hardware architecture of the FPGA in real-time for dynamic analysis and performance evaluation. The FPGA-based hardware emulation has achieved an ultralow latency of <inline-formula> <tex-math>$2.34~\\mu $ </tex-math></inline-formula>s, providing a remarkable 427-fold acceleration in faster-than-real-time (FTRT) performance. The designed controller performs well under transient and steady-state operating conditions, effectively stabilizing the MSBR system under perturbations, as validated on the RTDT.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"2997-3009"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11121444/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Molten salt breeder reactors (MSBRs), which utilize molten fluoride salts as both fuel and coolant, are currently being researched and designed worldwide, offering inherent safety features, efficient fuel utilization, and the potential for thorium-based fuel cycles. Given the advanced development status of MSBRs, real-time emulation is essential for dynamic analysis studies, accommodating more detailed models and advanced control strategies. This article proposes a real-time digital-twin (RTDT) based on a hardware-in-the-loop (HIL) emulation on a field-programmable gate array (FPGA) for a multi-domain two-fluid MSBR model with a designed controller for validation and testing. A nonlinear explicit numerical solution with an appropriate step-size and ordinary differential equation (ODE) solver is carried out in a non-iterative fashion to achieve the required accuracy and real-time execution. The MSBR hardware emulation and closed-loop controller tests have been implemented on the parallel hardware architecture of the FPGA in real-time for dynamic analysis and performance evaluation. The FPGA-based hardware emulation has achieved an ultralow latency of $2.34~\mu $ s, providing a remarkable 427-fold acceleration in faster-than-real-time (FTRT) performance. The designed controller performs well under transient and steady-state operating conditions, effectively stabilizing the MSBR system under perturbations, as validated on the RTDT.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.