An Adaptive Time-Stepping Finite Element Method With Schur-Complement Preconditioning for Surge Simulation of Magnetic Components

IF 1.5 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhe Chen;Yanning Chen;Yi-Yao Wang;Hao-Xuan Zhang;Yin-Da Wang;Rongchuan Bai;Zhengwei Du;Yingzong Liang;Fang Liu;Hao Xie;Wen-Yan Yin
{"title":"An Adaptive Time-Stepping Finite Element Method With Schur-Complement Preconditioning for Surge Simulation of Magnetic Components","authors":"Zhe Chen;Yanning Chen;Yi-Yao Wang;Hao-Xuan Zhang;Yin-Da Wang;Rongchuan Bai;Zhengwei Du;Yingzong Liang;Fang Liu;Hao Xie;Wen-Yan Yin","doi":"10.1109/JMMCT.2025.3606993","DOIUrl":null,"url":null,"abstract":"Surge over-voltages may induce magnetic saturation, flux instability in power components and undermining reliability. To address trade-off between computational efficiency and accuracy of the fixed-step finite element method (FEM) under transients, this paper presents an adaptive time-stepping FEM (ATS-FEM) driven by higher-order truncation-error estimation, with Schur complement preconditioning integrated to optimize memory usage for accelerating parallel matrix solution. Three typical magnetic components often used in strong magnetic launch and propulsion systems are simulated and validated in comparison with that of commercial software. It is shown that our developed ATS-FEM can dynamically adjust the time steps but with high numerical accuracy maintained, and it also has the capability for capturing localized saturation, radial gradients, and permeability drops in high-current regions of the magnetic components.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"421-432"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153431/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Surge over-voltages may induce magnetic saturation, flux instability in power components and undermining reliability. To address trade-off between computational efficiency and accuracy of the fixed-step finite element method (FEM) under transients, this paper presents an adaptive time-stepping FEM (ATS-FEM) driven by higher-order truncation-error estimation, with Schur complement preconditioning integrated to optimize memory usage for accelerating parallel matrix solution. Three typical magnetic components often used in strong magnetic launch and propulsion systems are simulated and validated in comparison with that of commercial software. It is shown that our developed ATS-FEM can dynamically adjust the time steps but with high numerical accuracy maintained, and it also has the capability for capturing localized saturation, radial gradients, and permeability drops in high-current regions of the magnetic components.
磁元件喘振仿真的schur -补体预处理自适应时步有限元法
浪涌过电压可能引起电力元件磁饱和,磁通不稳定,影响可靠性。为解决定步有限元法在瞬态条件下计算效率和精度之间的权衡问题,提出了一种基于高阶截断误差估计的自适应时步有限元法(uts -FEM),并结合Schur补预条件优化内存使用,以加速并行矩阵求解。对强磁发射推进系统中常用的三种典型磁性元件进行了仿真验证,并与商用软件进行了对比。结果表明,所开发的ATS-FEM可以动态调整时间步长,但保持了较高的数值精度,并且能够捕获磁性元件在大电流区域的局部饱和、径向梯度和磁导率下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信