Honglin Zhao;Jian Yang;Guoqiang Zeng;Fuquan Chen;Chengshuai Tian;Chuanhao Hu
{"title":"A Gamma-Ray Imaging Detector Using Position-Sensitive SiPM Coupled to GAGG:Ce Scintillator Array","authors":"Honglin Zhao;Jian Yang;Guoqiang Zeng;Fuquan Chen;Chengshuai Tian;Chuanhao Hu","doi":"10.1109/TNS.2025.3597733","DOIUrl":null,"url":null,"abstract":"Position-sensitive scintillator detectors are critical components in coded-aperture imaging and Compton imaging systems. Improving the position resolution and energy resolution of the detector is crucial for system performance. Traditional position sensitive scintillator detectors are constrained by the size of photoelectric readout devices and the number of readout channels, making it difficult to achieve both high position resolution and energy resolution at a low cost. This study presents a novel gamma-ray imaging detector that overcomes the traditional trade-off between position resolution, energy resolution, and cost. Using a high-resolution cerium-doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillator array (<inline-formula> <tex-math>$0.5\\times 0.5\\times 5$ </tex-math></inline-formula> mm pixels) read out by a position-sensitive silicon photomultiplier (PS-SiPM) through its four anodes, we achieved direct position reconstruction without the use of a light-sharing technique. A <sup>137</sup>Cs source was used to test the performance of this imaging detector. It demonstrated a clear segmentation of a <inline-formula> <tex-math>$10\\times 10$ </tex-math></inline-formula> array with 7.2% [full-width-at-half-maximum (FWHM)] energy resolution for 662 keV, significantly simplifying the design of electronic readout systems.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"3131-3137"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11122476/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Position-sensitive scintillator detectors are critical components in coded-aperture imaging and Compton imaging systems. Improving the position resolution and energy resolution of the detector is crucial for system performance. Traditional position sensitive scintillator detectors are constrained by the size of photoelectric readout devices and the number of readout channels, making it difficult to achieve both high position resolution and energy resolution at a low cost. This study presents a novel gamma-ray imaging detector that overcomes the traditional trade-off between position resolution, energy resolution, and cost. Using a high-resolution cerium-doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillator array ($0.5\times 0.5\times 5$ mm pixels) read out by a position-sensitive silicon photomultiplier (PS-SiPM) through its four anodes, we achieved direct position reconstruction without the use of a light-sharing technique. A 137Cs source was used to test the performance of this imaging detector. It demonstrated a clear segmentation of a $10\times 10$ array with 7.2% [full-width-at-half-maximum (FWHM)] energy resolution for 662 keV, significantly simplifying the design of electronic readout systems.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.