{"title":"Performance of a SiPM Readout ASIC Chip MPT2321","authors":"Qin Jiang;Yan Huang;Rong Zhou;Zhonghai Wang;Wei Shen","doi":"10.1109/TNS.2025.3598055","DOIUrl":null,"url":null,"abstract":"MPT2321 is a 32-channel application-specific integrated circuit (ASIC) for silicon photomultiplier (SiPM), featuring high signal-to-noise ratio (SNR) and energy resolution, along with outstanding timing performance. Particularly for single-photon signals, the chip maintains a considerably high SNR. This article describes the fundamental architecture and key performance parameters of the chip. A series of measurements was conducted to evaluate the charge and time detection performance. First, the timing jitters of the analog and analog–digital mixed parts of the chip were measured by external charge injection. Then, a single photon spectrum was acquired by irradiating the SiPM (Hamamatsu S15639-1325PS, <inline-formula> <tex-math>$1.3\\times 1.1$ </tex-math></inline-formula> mm, and pixel pitch of <inline-formula> <tex-math>$25~\\mu $ </tex-math></inline-formula>m) with a high-precision pulsed laser, revealing clearly distinguishable peaks. Meanwhile, factors affecting timing jitter were also analyzed. Additionally, by utilizing light emitting diode (LED) emission, the single-photon spectra of different single-photon avalanche diode (SPAD) sizes (25, 35, and <inline-formula> <tex-math>$40~\\mu $ </tex-math></inline-formula>m) were presented. Finally, the energy resolution was measured to be 8.7% <inline-formula> <tex-math>$\\pm ~0.1$ </tex-math></inline-formula>% full width at half maximum (FWHM) at 511 keV using SiPM (Hamamatsu S14160-6050HS, <inline-formula> <tex-math>$6\\times 6$ </tex-math></inline-formula> mm) coupled with lutetium yttrium oxyorthosilicate (LYSO) crystals (<inline-formula> <tex-math>$4\\times 4\\times 20$ </tex-math></inline-formula> mm). With time walk correction, a coincidence time resolution (CTR) of <inline-formula> <tex-math>$289~\\pm ~6$ </tex-math></inline-formula> ps (FWHM) was achieved. Based on the results of these performance measurements, MPT2321 has been verified to be a qualified candidate for applications in several fields.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"3094-3101"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11123534/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
MPT2321 is a 32-channel application-specific integrated circuit (ASIC) for silicon photomultiplier (SiPM), featuring high signal-to-noise ratio (SNR) and energy resolution, along with outstanding timing performance. Particularly for single-photon signals, the chip maintains a considerably high SNR. This article describes the fundamental architecture and key performance parameters of the chip. A series of measurements was conducted to evaluate the charge and time detection performance. First, the timing jitters of the analog and analog–digital mixed parts of the chip were measured by external charge injection. Then, a single photon spectrum was acquired by irradiating the SiPM (Hamamatsu S15639-1325PS, $1.3\times 1.1$ mm, and pixel pitch of $25~\mu $ m) with a high-precision pulsed laser, revealing clearly distinguishable peaks. Meanwhile, factors affecting timing jitter were also analyzed. Additionally, by utilizing light emitting diode (LED) emission, the single-photon spectra of different single-photon avalanche diode (SPAD) sizes (25, 35, and $40~\mu $ m) were presented. Finally, the energy resolution was measured to be 8.7% $\pm ~0.1$ % full width at half maximum (FWHM) at 511 keV using SiPM (Hamamatsu S14160-6050HS, $6\times 6$ mm) coupled with lutetium yttrium oxyorthosilicate (LYSO) crystals ($4\times 4\times 20$ mm). With time walk correction, a coincidence time resolution (CTR) of $289~\pm ~6$ ps (FWHM) was achieved. Based on the results of these performance measurements, MPT2321 has been verified to be a qualified candidate for applications in several fields.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.