{"title":"Functional Analysis of Neutron-Gamma Pulses and Synthetic Pulse Generation for Liquid Scintillator","authors":"Ram Kumar Paul;Raj Bhattacherjee;Kaushik Banerjee;Sainath Bitragunta;Amitabha Das;Ayan Banerjee;Partha Dhara;Tapas Samanta;Sarbajit Pal;Daniel Cano-Ott","doi":"10.1109/TNS.2025.3596400","DOIUrl":null,"url":null,"abstract":"An innovative method is proposed to generate a realistic functional neutron and gamma pulses model for a liquid scintillator-based detector. This approach analyzed neutron and gamma pulse shapes, electronic noise, and fit the model parameters that include the intrinsic properties of the scintillator and standard deviation of the transit time of the photomultiplier tube (PMT). The synthetic data are generated using Monte-Carlo (MC)-based statistical methods from the modeled functions, energy distributions of neutrons, gammas, and electronic noise. This work emulates realistic pulses that can be used to calibrate and test scintillation detectors used in nuclear physics experiments. This synthetic data library provides realistic labeled neutron and gamma pulses for liquid scintillators and PMTs, which may be used for improving radiation detection through supervised machine learning. This study provides a comprehensive framework for neutron-gamma discrimination, synthetic data generation, and data validation.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"2980-2990"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11115148/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative method is proposed to generate a realistic functional neutron and gamma pulses model for a liquid scintillator-based detector. This approach analyzed neutron and gamma pulse shapes, electronic noise, and fit the model parameters that include the intrinsic properties of the scintillator and standard deviation of the transit time of the photomultiplier tube (PMT). The synthetic data are generated using Monte-Carlo (MC)-based statistical methods from the modeled functions, energy distributions of neutrons, gammas, and electronic noise. This work emulates realistic pulses that can be used to calibrate and test scintillation detectors used in nuclear physics experiments. This synthetic data library provides realistic labeled neutron and gamma pulses for liquid scintillators and PMTs, which may be used for improving radiation detection through supervised machine learning. This study provides a comprehensive framework for neutron-gamma discrimination, synthetic data generation, and data validation.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.