Functional Analysis of Neutron-Gamma Pulses and Synthetic Pulse Generation for Liquid Scintillator

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ram Kumar Paul;Raj Bhattacherjee;Kaushik Banerjee;Sainath Bitragunta;Amitabha Das;Ayan Banerjee;Partha Dhara;Tapas Samanta;Sarbajit Pal;Daniel Cano-Ott
{"title":"Functional Analysis of Neutron-Gamma Pulses and Synthetic Pulse Generation for Liquid Scintillator","authors":"Ram Kumar Paul;Raj Bhattacherjee;Kaushik Banerjee;Sainath Bitragunta;Amitabha Das;Ayan Banerjee;Partha Dhara;Tapas Samanta;Sarbajit Pal;Daniel Cano-Ott","doi":"10.1109/TNS.2025.3596400","DOIUrl":null,"url":null,"abstract":"An innovative method is proposed to generate a realistic functional neutron and gamma pulses model for a liquid scintillator-based detector. This approach analyzed neutron and gamma pulse shapes, electronic noise, and fit the model parameters that include the intrinsic properties of the scintillator and standard deviation of the transit time of the photomultiplier tube (PMT). The synthetic data are generated using Monte-Carlo (MC)-based statistical methods from the modeled functions, energy distributions of neutrons, gammas, and electronic noise. This work emulates realistic pulses that can be used to calibrate and test scintillation detectors used in nuclear physics experiments. This synthetic data library provides realistic labeled neutron and gamma pulses for liquid scintillators and PMTs, which may be used for improving radiation detection through supervised machine learning. This study provides a comprehensive framework for neutron-gamma discrimination, synthetic data generation, and data validation.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"2980-2990"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11115148/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative method is proposed to generate a realistic functional neutron and gamma pulses model for a liquid scintillator-based detector. This approach analyzed neutron and gamma pulse shapes, electronic noise, and fit the model parameters that include the intrinsic properties of the scintillator and standard deviation of the transit time of the photomultiplier tube (PMT). The synthetic data are generated using Monte-Carlo (MC)-based statistical methods from the modeled functions, energy distributions of neutrons, gammas, and electronic noise. This work emulates realistic pulses that can be used to calibrate and test scintillation detectors used in nuclear physics experiments. This synthetic data library provides realistic labeled neutron and gamma pulses for liquid scintillators and PMTs, which may be used for improving radiation detection through supervised machine learning. This study provides a comprehensive framework for neutron-gamma discrimination, synthetic data generation, and data validation.
液体闪烁体中子-伽马脉冲的功能分析及合成脉冲的产生
提出了一种新颖的方法,为基于液体闪烁体的探测器生成一个真实的功能中子和伽马脉冲模型。该方法分析了中子和伽马脉冲的形状、电子噪声,并拟合了包括闪烁体固有特性和光电倍增管(PMT)过境时间标准差在内的模型参数。合成数据是利用基于蒙特卡罗(MC)的统计方法从建模函数、中子、伽马和电子噪声的能量分布中生成的。这项工作模拟了真实的脉冲,可以用来校准和测试核物理实验中使用的闪烁探测器。该合成数据库为液体闪烁体和pmt提供了真实的标记中子和伽马脉冲,可用于通过监督机器学习改进辐射检测。本研究为中子-伽马鉴别、合成数据生成和数据验证提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信