Optimization and Performance Evaluation of a Multiturn, Outer Rotor VR Resolver for Enhanced Accuracy and Manufacturability

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
M. R. Soleimani;Z. Nasiri-Gheidari;F. Tootoonchian;H. Oraee
{"title":"Optimization and Performance Evaluation of a Multiturn, Outer Rotor VR Resolver for Enhanced Accuracy and Manufacturability","authors":"M. R. Soleimani;Z. Nasiri-Gheidari;F. Tootoonchian;H. Oraee","doi":"10.1109/TIM.2025.3609383","DOIUrl":null,"url":null,"abstract":"This article presents an optimized design for a multiturn outer rotor variable reluctance (VR) resolver, focusing on enhancing its accuracy, manufacturability, and overall performance. An analytical model is developed to evaluate the influence of key design parameters, including rotor contour, winding configuration, and the number of turns per layer. Through a comprehensive optimization process, the best combinations of these parameters are identified, improving both the precision and efficiency of the resolver. The study also explores the impact of rotor yoke thickness on sensor accuracy, offering insights into the tradeoffs between compactness and precision. Experimental validation is conducted by fabricating a prototype based on the optimized design and comparing its performance with simulation results. The prototype demonstrates excellent agreement with the simulations, exhibiting low position errors and confirming the effectiveness of the proposed design and optimization strategy. The findings provide a practical framework for designing high-precision VR resolvers, balancing accuracy, cost-effectiveness, and ease of construction.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-8"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11162632/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an optimized design for a multiturn outer rotor variable reluctance (VR) resolver, focusing on enhancing its accuracy, manufacturability, and overall performance. An analytical model is developed to evaluate the influence of key design parameters, including rotor contour, winding configuration, and the number of turns per layer. Through a comprehensive optimization process, the best combinations of these parameters are identified, improving both the precision and efficiency of the resolver. The study also explores the impact of rotor yoke thickness on sensor accuracy, offering insights into the tradeoffs between compactness and precision. Experimental validation is conducted by fabricating a prototype based on the optimized design and comparing its performance with simulation results. The prototype demonstrates excellent agreement with the simulations, exhibiting low position errors and confirming the effectiveness of the proposed design and optimization strategy. The findings provide a practical framework for designing high-precision VR resolvers, balancing accuracy, cost-effectiveness, and ease of construction.
为提高精度和可制造性而进行的多匝外转子VR解析器优化与性能评价
本文提出了一种多匝外转子可变磁阻(VR)解析器的优化设计,重点是提高其精度、可制造性和整体性能。建立了一个分析模型来评估关键设计参数的影响,包括转子轮廓、绕组结构和每层匝数。通过综合优化过程,确定了这些参数的最佳组合,提高了解析器的精度和效率。该研究还探讨了转子轭厚度对传感器精度的影响,为紧凑性和精度之间的权衡提供了见解。通过制作基于优化设计的样机,并将其性能与仿真结果进行比较,进行了实验验证。样机与仿真结果吻合良好,位置误差小,验证了所提设计和优化策略的有效性。研究结果为设计高精度VR解析器、平衡精度、成本效益和易于构建提供了实用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信