FMCW Radar for 3-D Tracking Based on MLBI Interferometer and MDS Estimation

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Salvador Andrés;Carlos Heras;Andrés Ocabo;Jorge Lanzuela;Rubén Martínez;Asier Villafranca;Iñigo Salinas;Rafael Alonso
{"title":"FMCW Radar for 3-D Tracking Based on MLBI Interferometer and MDS Estimation","authors":"Salvador Andrés;Carlos Heras;Andrés Ocabo;Jorge Lanzuela;Rubén Martínez;Asier Villafranca;Iñigo Salinas;Rafael Alonso","doi":"10.1109/TIM.2025.3604971","DOIUrl":null,"url":null,"abstract":"This article presents the implementation of a C-band frequency-modulated continuous wave (FMCW) radar system, utilizing software-defined radio (SDR) hardware and integrated with a five-element multilong-baseline interferometer (MLBI) receiver, for the detection and 3-D tracking of passive moving targets. A key aspect is the generation of a low jitter, high signal-to-noise-and-distortion ratio (SINAD) signal, which significantly enhances the radar’s performance for angle of arrival (AoA) detection and micro-Doppler signature (MDS) estimation. The high signal quality achieved enables the detection and 3-D tracking of low radar cross-sectional (RCS) targets, such as small drones, at distances up to 800 m without requiring high radar power. In addition, this work demonstrates the effectiveness of a simple phase line assignment algorithm to mitigate errors in the AoA measurement of passive moving targets even when the MLBI geometry deviates from its optimal configuration. The performance of the radar system was evaluated in an open-field test using a DJI Mavic 3, and the results highlight the significant potential of this radar concept for medium-cost 3-D tracking and MDS identification applications.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-7"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11151814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11151814/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the implementation of a C-band frequency-modulated continuous wave (FMCW) radar system, utilizing software-defined radio (SDR) hardware and integrated with a five-element multilong-baseline interferometer (MLBI) receiver, for the detection and 3-D tracking of passive moving targets. A key aspect is the generation of a low jitter, high signal-to-noise-and-distortion ratio (SINAD) signal, which significantly enhances the radar’s performance for angle of arrival (AoA) detection and micro-Doppler signature (MDS) estimation. The high signal quality achieved enables the detection and 3-D tracking of low radar cross-sectional (RCS) targets, such as small drones, at distances up to 800 m without requiring high radar power. In addition, this work demonstrates the effectiveness of a simple phase line assignment algorithm to mitigate errors in the AoA measurement of passive moving targets even when the MLBI geometry deviates from its optimal configuration. The performance of the radar system was evaluated in an open-field test using a DJI Mavic 3, and the results highlight the significant potential of this radar concept for medium-cost 3-D tracking and MDS identification applications.
基于MLBI干涉仪和MDS估计的FMCW雷达三维跟踪
本文介绍了一种c波段调频连续波(FMCW)雷达系统的实现,该系统利用软件定义无线电(SDR)硬件,并集成了一个五元多长基线干涉仪(MLBI)接收机,用于无源运动目标的探测和三维跟踪。一个关键方面是产生低抖动、高信噪比(SINAD)的信号,从而显著提高雷达的到达角(AoA)探测和微多普勒特征(MDS)估计性能。所获得的高信号质量使探测和3-D跟踪低雷达横截面(RCS)目标,如小型无人机,距离高达800米,而不需要高雷达功率。此外,这项工作还证明了一种简单的相位线分配算法的有效性,即使在MLBI几何形状偏离其最佳配置时,也可以减轻被动运动目标AoA测量中的误差。雷达系统的性能在使用大疆Mavic 3的野外测试中进行了评估,结果突出了该雷达概念在中等成本的3- d跟踪和MDS识别应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信