{"title":"Surrogate-Assisted Differential Evolution With Search Space Tightening for High-Dimensional Expensive Optimization Problems","authors":"Rongfeng Zhou;Chongle Ren;Zhenyu Meng;Haibin Zhu","doi":"10.1109/TSMC.2025.3582897","DOIUrl":null,"url":null,"abstract":"High-dimensional expensive optimization problems (HEOPs) have posed significant challenges to current surrogate-assisted differential evolution algorithms (SADEs) because of the curse of dimensionality. To enhance the optimization efficiency and solution accuracy for HEOPs, Surrogate-assisted differential evolution with search space tightening (SADE-SS) is proposed in this article. There are three main contributions in SADE-SS: first, a novel parameter adaptation strategy is incorporated into the framework of SADE to improve its scalability by leveraging information from approximated fitness values. Second, a search space tightening strategy is proposed to strengthen the local exploitation capacity by identifying promising local search spaces. Third, a switching strategy is proposed to manage the global and local surrogate-assisted searches, aiming to balance exploration and exploitation capacities. Experiments on expensive benchmark functions with dimensions ranging from 30 to 400 were conducted to verify the effectiveness of SADE-SS for HEOPs. Moreover, ablation experiments were conducted to validate each proposed component. Comprehensive experimental results demonstrate that SADE-SS can secure highly competitive performance over state-of-the-art SAEAs for HEOPs.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"7356-7368"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11079237/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
High-dimensional expensive optimization problems (HEOPs) have posed significant challenges to current surrogate-assisted differential evolution algorithms (SADEs) because of the curse of dimensionality. To enhance the optimization efficiency and solution accuracy for HEOPs, Surrogate-assisted differential evolution with search space tightening (SADE-SS) is proposed in this article. There are three main contributions in SADE-SS: first, a novel parameter adaptation strategy is incorporated into the framework of SADE to improve its scalability by leveraging information from approximated fitness values. Second, a search space tightening strategy is proposed to strengthen the local exploitation capacity by identifying promising local search spaces. Third, a switching strategy is proposed to manage the global and local surrogate-assisted searches, aiming to balance exploration and exploitation capacities. Experiments on expensive benchmark functions with dimensions ranging from 30 to 400 were conducted to verify the effectiveness of SADE-SS for HEOPs. Moreover, ablation experiments were conducted to validate each proposed component. Comprehensive experimental results demonstrate that SADE-SS can secure highly competitive performance over state-of-the-art SAEAs for HEOPs.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.