Jeanette Wihan, Kristina Battis, Alana Hoffmann, Farina Windener, Marcus Himmler, Anish Varghese, Aron Koller, Isabell Karnatz, Dirk W. Schubert, Friederike Zunke, Wei Xiang, Tanja Kuhlmann, Jürgen Winkler
{"title":"Alpha synuclein-mediated cytoskeletal dysfunction impairs myelination in human oligodendrocytes","authors":"Jeanette Wihan, Kristina Battis, Alana Hoffmann, Farina Windener, Marcus Himmler, Anish Varghese, Aron Koller, Isabell Karnatz, Dirk W. Schubert, Friederike Zunke, Wei Xiang, Tanja Kuhlmann, Jürgen Winkler","doi":"10.1007/s00401-025-02933-z","DOIUrl":null,"url":null,"abstract":"<div><p>Oligodendroglial alpha-synuclein (aSyn) deposits are a key feature in the atypical parkinsonian disorder, multiple system atrophy (MSA) linked to profound myelin loss and neurodegeneration while precise cellular and molecular mechanisms remain unclear. We generated human oligodendrocytes (hOLs) from induced pluripotent stem cells to investigate the impact of aSyn on oligodendroglial morphology, differentiation, and function. We observed an aSyn-induced myelinogenic dysfunction characterized by impaired oligodendroglial process outgrowth, altered cell shape, and increased perinuclear accumulation of the tubulin polymerization promoting protein TPPP/p25α. These changes were associated with a reduced capacity to ensheath axons and were linked to compromised actin remodeling machinery. Actin imbalances were confirmed in <i>post-mortem</i> putaminal tissue from MSA patients. Treatment with a rho-associated protein kinase inhibitor rescued oligodendroglial process formation and improved ensheathment in aSyn-expressing hOLs. Our work emphasizes the aSyn-mediated interference with actin dynamics as a key pathogenic mechanism in MSA, pointing toward a novel therapeutic target for improving myelin maintenance.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"150 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-025-02933-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-025-02933-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oligodendroglial alpha-synuclein (aSyn) deposits are a key feature in the atypical parkinsonian disorder, multiple system atrophy (MSA) linked to profound myelin loss and neurodegeneration while precise cellular and molecular mechanisms remain unclear. We generated human oligodendrocytes (hOLs) from induced pluripotent stem cells to investigate the impact of aSyn on oligodendroglial morphology, differentiation, and function. We observed an aSyn-induced myelinogenic dysfunction characterized by impaired oligodendroglial process outgrowth, altered cell shape, and increased perinuclear accumulation of the tubulin polymerization promoting protein TPPP/p25α. These changes were associated with a reduced capacity to ensheath axons and were linked to compromised actin remodeling machinery. Actin imbalances were confirmed in post-mortem putaminal tissue from MSA patients. Treatment with a rho-associated protein kinase inhibitor rescued oligodendroglial process formation and improved ensheathment in aSyn-expressing hOLs. Our work emphasizes the aSyn-mediated interference with actin dynamics as a key pathogenic mechanism in MSA, pointing toward a novel therapeutic target for improving myelin maintenance.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.