Hyperspectral Imaging Combined With Machine Learning Methods to Quantify the Facial Skin Melanin and Erythema.

IF 2.3
Liangzhuang Wei, Xiangwei Yi, Wei Cheng, Yanyun Ma, Yandan Lin
{"title":"Hyperspectral Imaging Combined With Machine Learning Methods to Quantify the Facial Skin Melanin and Erythema.","authors":"Liangzhuang Wei, Xiangwei Yi, Wei Cheng, Yanyun Ma, Yandan Lin","doi":"10.1002/jbio.202500303","DOIUrl":null,"url":null,"abstract":"<p><p>Melanin deposition and erythema mainly constitute physiological responses of the skin to environmental changes and represent important factors evaluating and diagnosing the skin conditions. This study investigates the critical roles of melanin and hemoglobin in skin-light interaction and combines spectral reflectance with single-point pigment values (collected by Mexameter MX18) to achieve the objective imaging skin color assessment. Feature wavelengths selected by the competitive adaptive reweighted sampling algorithm aligned well with narrow wavelength band designed by MX18, effectively removing redundant data while maintaining the model accuracy. Furthermore, seven machine learning methods were compared and evaluated, among which the stacked generalization model demonstrated the best performance (RMSEV = 14.23, <math> <semantics> <mrow><msubsup><mi>R</mi> <mi>v</mi> <mn>2</mn></msubsup> <mo>=</mo> <mn>0.8634</mn></mrow> <annotation>$$ {R}_v^2=0.8634 $$</annotation></semantics> </math> , RPD<sub>v</sub> = 2.706 for melanin index; RMSEV = 31.74, <math> <semantics> <mrow><msubsup><mi>R</mi> <mi>v</mi> <mn>2</mn></msubsup> <mo>=</mo> <mn>0.7505</mn></mrow> <annotation>$$ {R}_v^2=0.7505 $$</annotation></semantics> </math> , RPD<sub>v</sub> = 2.002 for erythema index). Finally, hyperspectral imaging technology enabled the visualization of skin pigment distribution, providing a rapid and non-invasive analytical tool for dermatological diagnosis and aesthetic evaluation.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500303"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melanin deposition and erythema mainly constitute physiological responses of the skin to environmental changes and represent important factors evaluating and diagnosing the skin conditions. This study investigates the critical roles of melanin and hemoglobin in skin-light interaction and combines spectral reflectance with single-point pigment values (collected by Mexameter MX18) to achieve the objective imaging skin color assessment. Feature wavelengths selected by the competitive adaptive reweighted sampling algorithm aligned well with narrow wavelength band designed by MX18, effectively removing redundant data while maintaining the model accuracy. Furthermore, seven machine learning methods were compared and evaluated, among which the stacked generalization model demonstrated the best performance (RMSEV = 14.23, R v 2 = 0.8634 $$ {R}_v^2=0.8634 $$ , RPDv = 2.706 for melanin index; RMSEV = 31.74, R v 2 = 0.7505 $$ {R}_v^2=0.7505 $$ , RPDv = 2.002 for erythema index). Finally, hyperspectral imaging technology enabled the visualization of skin pigment distribution, providing a rapid and non-invasive analytical tool for dermatological diagnosis and aesthetic evaluation.

高光谱成像结合机器学习方法量化面部皮肤黑色素和红斑。
黑色素沉积和红斑主要是皮肤对环境变化的生理反应,是评价和诊断皮肤状况的重要因素。本研究探讨了黑色素和血红蛋白在皮肤-光相互作用中的关键作用,并将光谱反射率与单点色素值(由MX18采集)相结合,实现了客观的成像肤色评估。竞争性自适应重加权采样算法选择的特征波长与MX18设计的窄波段匹配良好,在保持模型精度的同时有效去除冗余数据。并对7种机器学习方法进行了比较和评价,其中堆叠泛化模型表现最好(黑色素指数RMSEV = 14.23, R v 2 = 0.8634 $$ {R}_v^2=0.8634 $$, RPDv = 2.706;红斑指数RMSEV = 31.74, R v 2 = 0.7505 $$ {R}_v^2=0.7505 $$, RPDv = 2.002)。最后,高光谱成像技术使皮肤色素分布可视化,为皮肤病诊断和美学评价提供了一种快速、无创的分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信