Personalized whole-brain models of seizure propagation.

IF 3.8
Edmundo Lopez-Sola, Borja Mercadal, Èlia Lleal-Custey, Ricardo Salvador, Roser Sanchez-Todo, Fabrice Wendling, Fabrice Bartolomei, Giulio Ruffini
{"title":"Personalized whole-brain models of seizure propagation.","authors":"Edmundo Lopez-Sola, Borja Mercadal, Èlia Lleal-Custey, Ricardo Salvador, Roser Sanchez-Todo, Fabrice Wendling, Fabrice Bartolomei, Giulio Ruffini","doi":"10.1088/1741-2552/ae08e9","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Computational modeling has recently emerged as a powerful tool to better understand seizure dynamics and guide new treatment strategies. This work aims to develop and personalize whole-brain computational models in epilepsy using multimodal clinical data to simulate and evaluate individualized therapeutic strategies.<i>Approach.</i>We present a computational framework that constructs patient-specific whole-brain models of seizure propagation by integrating SEEG, MRI, and diffusion MRI data. The pipeline uses neural mass models for each node in the network, simulating whole-brain dynamics. Model personalization involves adjusting global and local parameters representing the excitability of individual brain areas, using an evolutionary algorithm that aims to maximize the correlation between empirical and synthetic functional connectivity matrices derived from SEEG data.<i>Main results.</i>The resulting personalized models successfully reproduce individual seizure propagation patterns and can be used to simulate therapeutic interventions like surgery, stimulation, or pharmacological interventions within a unified physiological framework. Notably, model predictions reveal distinct patient-specific responses across interventions, including variable sensitivity to different pharmacological agents and identification of critical regions whose removal or modulation reduced seizure spread.<i>Significance.</i>This framework provides a mechanistic, interpretable approach to simulate and compare individualized treatment strategies. By integrating multimodal data into a unified whole-brain model, it has the potential to improve clinical decision-making in epilepsy by identifying accessible and functionally relevant targets.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ae08e9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Computational modeling has recently emerged as a powerful tool to better understand seizure dynamics and guide new treatment strategies. This work aims to develop and personalize whole-brain computational models in epilepsy using multimodal clinical data to simulate and evaluate individualized therapeutic strategies.Approach.We present a computational framework that constructs patient-specific whole-brain models of seizure propagation by integrating SEEG, MRI, and diffusion MRI data. The pipeline uses neural mass models for each node in the network, simulating whole-brain dynamics. Model personalization involves adjusting global and local parameters representing the excitability of individual brain areas, using an evolutionary algorithm that aims to maximize the correlation between empirical and synthetic functional connectivity matrices derived from SEEG data.Main results.The resulting personalized models successfully reproduce individual seizure propagation patterns and can be used to simulate therapeutic interventions like surgery, stimulation, or pharmacological interventions within a unified physiological framework. Notably, model predictions reveal distinct patient-specific responses across interventions, including variable sensitivity to different pharmacological agents and identification of critical regions whose removal or modulation reduced seizure spread.Significance.This framework provides a mechanistic, interpretable approach to simulate and compare individualized treatment strategies. By integrating multimodal data into a unified whole-brain model, it has the potential to improve clinical decision-making in epilepsy by identifying accessible and functionally relevant targets.

癫痫发作传播的个性化全脑模型。
目的:计算建模最近成为更好地理解癫痫发作动态和指导新的治疗策略的有力工具。这项工作旨在利用多模态临床数据来模拟和评估个性化治疗策略,开发和个性化癫痫全脑计算模型。方法:我们提出了一个计算框架,通过整合SEEG、MRI和弥散MRI数据,构建患者特异性癫痫发作传播的全脑模型。该管道对网络中的每个节点使用神经质量模型,模拟全脑动态。模型个性化包括调整代表单个大脑区域兴奋性的全局和局部参数,使用一种进化算法,旨在最大化从SEEG数据中得出的经验和合成功能连接矩阵之间的相关性。由此产生的个性化模型成功地再现了个体癫痫传播模式,并可用于在统一的生理框架内模拟手术、刺激或药物干预等治疗干预。值得注意的是,模型预测揭示了不同干预措施的不同患者特异性反应,包括对不同药理学药物的不同敏感性,以及对关键区域的识别,其去除或调节减少了癫痫发作的扩散。意义:该框架提供了一种机制的、可解释的方法来模拟和比较个体化治疗策略。通过将多模态数据整合到统一的全脑模型中,它有可能通过识别可获得的和功能相关的目标来改善癫痫的临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信