Synthetic coevolution reveals adaptive mutational trajectories of neutralizing antibodies and SARS-CoV-2.

IF 7.7
Roy A Ehling, Mason Minot, Max D Overath, Daniel J Sheward, Jiami Han, Beichen Gao, Joseph M Taft, Margarita Pertseva, Cédric R Weber, Lester Frei, Thomas Bikias, Ben Murrell, Sai T Reddy
{"title":"Synthetic coevolution reveals adaptive mutational trajectories of neutralizing antibodies and SARS-CoV-2.","authors":"Roy A Ehling, Mason Minot, Max D Overath, Daniel J Sheward, Jiami Han, Beichen Gao, Joseph M Taft, Margarita Pertseva, Cédric R Weber, Lester Frei, Thomas Bikias, Ben Murrell, Sai T Reddy","doi":"10.1016/j.cels.2025.101391","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic showcased a coevolutionary race between the human immune system and SARS-CoV-2, during which the immune system generated neutralizing antibodies targeting the SARS-CoV-2 spike protein's receptor-binding domain (RBD), crucial for host cell invasion, while the virus evolved to evade antibody recognition. Here, we establish a synthetic coevolution system combining high-throughput screening of antibody and RBD variant libraries with protein mutagenesis, surface display, and deep sequencing. Additionally, to significantly extend our interrogation of sequence space, we train a protein language model that predicts antibody escape to RBD variants and demonstrate its capability to generalize to a larger mutational load and mutations at positions unseen during training. Through explainable AI techniques, we probe the model and identify biologically meaningful coevolution trends. Synthetic coevolution reveals antagonistic and compensatory mutational trajectories of neutralizing antibodies and SARS-CoV-2 variants, enhancing the understanding of this evolutionary conflict.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"16 9","pages":"101391"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic showcased a coevolutionary race between the human immune system and SARS-CoV-2, during which the immune system generated neutralizing antibodies targeting the SARS-CoV-2 spike protein's receptor-binding domain (RBD), crucial for host cell invasion, while the virus evolved to evade antibody recognition. Here, we establish a synthetic coevolution system combining high-throughput screening of antibody and RBD variant libraries with protein mutagenesis, surface display, and deep sequencing. Additionally, to significantly extend our interrogation of sequence space, we train a protein language model that predicts antibody escape to RBD variants and demonstrate its capability to generalize to a larger mutational load and mutations at positions unseen during training. Through explainable AI techniques, we probe the model and identify biologically meaningful coevolution trends. Synthetic coevolution reveals antagonistic and compensatory mutational trajectories of neutralizing antibodies and SARS-CoV-2 variants, enhancing the understanding of this evolutionary conflict.

合成协同进化揭示了中和抗体与SARS-CoV-2的适应性突变轨迹
COVID-19大流行展示了人类免疫系统与SARS-CoV-2之间的共同进化竞赛,在此过程中,免疫系统产生了针对SARS-CoV-2刺突蛋白受体结合域(RBD)的中和抗体,这对宿主细胞入侵至关重要,而病毒进化以逃避抗体识别。在此,我们建立了一个结合抗体和RBD变异文库的高通量筛选、蛋白质诱变、表面展示和深度测序的合成协同进化系统。此外,为了显著扩展我们对序列空间的研究,我们训练了一个蛋白质语言模型,该模型预测抗体逃逸到RBD变体,并证明了它能够推广到更大的突变负载和训练中未见位置的突变。通过可解释的人工智能技术,我们探索了模型并确定了生物学上有意义的共同进化趋势。合成协同进化揭示了中和抗体和SARS-CoV-2变体的拮抗和代偿突变轨迹,增强了对这种进化冲突的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信