The Role of Artificial Intelligence, Including Endoscopic Diagnosis, in the Prediction of Presence, Bleeding, and Mortality of Esophageal Varices.

IF 4.7
Yoshihiro Furuichi, Ryohei Nishiguchi, Yuko Furuichi, Shirei Kobayashi, Tomoyuki Fujiwara, Koichiro Sato
{"title":"The Role of Artificial Intelligence, Including Endoscopic Diagnosis, in the Prediction of Presence, Bleeding, and Mortality of Esophageal Varices.","authors":"Yoshihiro Furuichi, Ryohei Nishiguchi, Yuko Furuichi, Shirei Kobayashi, Tomoyuki Fujiwara, Koichiro Sato","doi":"10.1111/den.70032","DOIUrl":null,"url":null,"abstract":"<p><p>Esophagogastric varices (EGVs) are a disease that occurs as a complication of the progression of liver cirrhosis, and since bleeding can be fatal, regular endoscopy is necessary. With the development of artificial intelligence (AI) in recent years, it is beginning to be applied to predicting the presence of EGVs, predicting bleeding, and making a diagnosis and prognosis. Based on previous reports, application methods of AI can be classified into the following four categories: (1) noninvasive prediction using clinical data obtained from clinical records such as laboratory data, past history, and present illness, (2) invasive detection and prediction using endoscopy and computed tomography (CT), (3) invasive prediction using multimodal AI (clinical data and endoscopy), (4) invasive virtual measurement on the image of endoscopy and CT. These methods currently allow for the use of AI in the following ways: (1) prediction of EGVs existence, variceal grade, bleeding risk, and survival rate, (2) detection and diagnosis of esophageal varices (EVs), (3) prediction of bleeding within 1 year, (4) prediction of variceal diameter and portal pressure gradient. This review explores current studies on AI applications in assessing EGVs, highlighting their benefits, limitations, and future directions.</p>","PeriodicalId":72813,"journal":{"name":"Digestive endoscopy : official journal of the Japan Gastroenterological Endoscopy Society","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digestive endoscopy : official journal of the Japan Gastroenterological Endoscopy Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/den.70032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Esophagogastric varices (EGVs) are a disease that occurs as a complication of the progression of liver cirrhosis, and since bleeding can be fatal, regular endoscopy is necessary. With the development of artificial intelligence (AI) in recent years, it is beginning to be applied to predicting the presence of EGVs, predicting bleeding, and making a diagnosis and prognosis. Based on previous reports, application methods of AI can be classified into the following four categories: (1) noninvasive prediction using clinical data obtained from clinical records such as laboratory data, past history, and present illness, (2) invasive detection and prediction using endoscopy and computed tomography (CT), (3) invasive prediction using multimodal AI (clinical data and endoscopy), (4) invasive virtual measurement on the image of endoscopy and CT. These methods currently allow for the use of AI in the following ways: (1) prediction of EGVs existence, variceal grade, bleeding risk, and survival rate, (2) detection and diagnosis of esophageal varices (EVs), (3) prediction of bleeding within 1 year, (4) prediction of variceal diameter and portal pressure gradient. This review explores current studies on AI applications in assessing EGVs, highlighting their benefits, limitations, and future directions.

人工智能的作用,包括内镜诊断,在预测存在,出血和死亡率的食管静脉曲张。
食管胃静脉曲张(EGVs)是肝硬化进展的一种并发症,由于出血可能是致命的,因此有必要定期进行内窥镜检查。近年来随着人工智能(AI)的发展,人工智能开始应用于预测egv的存在、预测出血、诊断和预后。根据以往的报道,人工智能的应用方法可分为以下四类:(1)利用临床记录(如实验室数据、既往病史和当前疾病)获得的临床数据进行无创预测;(2)利用内窥镜和计算机断层扫描(CT)进行有创检测和预测;(3)利用多模态人工智能(临床数据和内窥镜)进行有创预测;这些方法目前允许在以下方面使用AI:(1)预测egv的存在、静脉曲张等级、出血风险和生存率;(2)食管静脉曲张(ev)的检测和诊断;(3)预测1年内出血;(4)预测静脉曲张直径和门静脉压力梯度。本文综述了目前人工智能在egv评估中的应用研究,强调了它们的优点、局限性和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信