Residual Structural Equation Modeling with Nonnormal Distribution.

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ming-Chi Tseng
{"title":"Residual Structural Equation Modeling with Nonnormal Distribution.","authors":"Ming-Chi Tseng","doi":"10.1080/00273171.2025.2545371","DOIUrl":null,"url":null,"abstract":"<p><p>This study primarily investigates the impact of ignoring nonnormal distributions in RSEM models on the estimation of parameters in the second residual structure. The results of the simulation studies demonstrate that when the RSEM model follows a nonnormal distribution, it is crucial to test and estimate the nonnormal distribution while constructing mixture RI-AR or mixture RI-CLPM models. This approach guarantees the unbiased estimation of autoregressive parameters and cross-lagged parameters in the second residual structure. If, during the construction of an empirical model, the nonnormal distribution of mixture RI-AR models or mixture RI-CLPM models is not taken into account, or if a normal distribution is assumed directly for analysis, the resulting parameter estimates for autoregressive parameters and cross-lagged parameters will be biased, leading to erroneous inferences.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-16"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2545371","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study primarily investigates the impact of ignoring nonnormal distributions in RSEM models on the estimation of parameters in the second residual structure. The results of the simulation studies demonstrate that when the RSEM model follows a nonnormal distribution, it is crucial to test and estimate the nonnormal distribution while constructing mixture RI-AR or mixture RI-CLPM models. This approach guarantees the unbiased estimation of autoregressive parameters and cross-lagged parameters in the second residual structure. If, during the construction of an empirical model, the nonnormal distribution of mixture RI-AR models or mixture RI-CLPM models is not taken into account, or if a normal distribution is assumed directly for analysis, the resulting parameter estimates for autoregressive parameters and cross-lagged parameters will be biased, leading to erroneous inferences.

非正态分布残差结构方程建模。
本文主要研究了RSEM模型中忽略非正态分布对第二残差结构参数估计的影响。仿真研究结果表明,当RSEM模型服从非正态分布时,在构建混合RI-AR或混合RI-CLPM模型时,检验和估计非正态分布是至关重要的。该方法保证了二阶残差结构中自回归参数和交叉滞后参数的无偏估计。在构建经验模型时,如果不考虑混合RI-AR模型或混合RI-CLPM模型的非正态分布,或者直接假设正态分布进行分析,则所得自回归参数和交叉滞后参数的参数估计将存在偏差,从而导致错误的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信