Simulation of stroke gait impairment correction using cable-driven lower limb rehabilitation exoskeleton (C-LREX).

IF 2.8 Q2 ENGINEERING, BIOMEDICAL
Wearable technologies Pub Date : 2025-08-08 eCollection Date: 2025-01-01 DOI:10.1017/wtc.2025.10013
Rajan Prasad, Marwan El-Rich, Mohammad I Awad, Kinda Khalaf
{"title":"Simulation of stroke gait impairment correction using cable-driven lower limb rehabilitation exoskeleton (C-LREX).","authors":"Rajan Prasad, Marwan El-Rich, Mohammad I Awad, Kinda Khalaf","doi":"10.1017/wtc.2025.10013","DOIUrl":null,"url":null,"abstract":"<p><p>Cable-driven exoskeletons have recently shown great promise in the rehabilitation of stroke survivors. Numerical modeling/simulation provides a cost- and time-effective approach to fine-tuning design parameters of the exoskeletons, hence reducing the need for expensive and time-consuming experimental trials. This study investigated using a cable-driven lower limb rehabilitation exoskeleton (C-LREX) to correct stroke-impaired gait and track reference healthy trajectories. The impact of different levels of impairment and subject anthropometry variation on the model's performance was studied. The C-LREX model was successful in assisting the impaired limb to track the reference trajectory in all impaired gait patterns, except for higher impairment levels (>20° range of motion deviation at the hip joint). Subject anthropometry variation did not affect trajectory tracking when the cable routing was scaled to fit the user's anthropometry. This study confirmed that the C-LREX model could simulate various impaired lower limb gait patterns in the sagittal plane and determine the cable tension requirements needed to correct the impairment. Future work includes expanding the framework to incorporate frontal plane motion and to validate C-LREX performance in assisting biplanar impaired motion.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"6 ","pages":"e39"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2025.10013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cable-driven exoskeletons have recently shown great promise in the rehabilitation of stroke survivors. Numerical modeling/simulation provides a cost- and time-effective approach to fine-tuning design parameters of the exoskeletons, hence reducing the need for expensive and time-consuming experimental trials. This study investigated using a cable-driven lower limb rehabilitation exoskeleton (C-LREX) to correct stroke-impaired gait and track reference healthy trajectories. The impact of different levels of impairment and subject anthropometry variation on the model's performance was studied. The C-LREX model was successful in assisting the impaired limb to track the reference trajectory in all impaired gait patterns, except for higher impairment levels (>20° range of motion deviation at the hip joint). Subject anthropometry variation did not affect trajectory tracking when the cable routing was scaled to fit the user's anthropometry. This study confirmed that the C-LREX model could simulate various impaired lower limb gait patterns in the sagittal plane and determine the cable tension requirements needed to correct the impairment. Future work includes expanding the framework to incorporate frontal plane motion and to validate C-LREX performance in assisting biplanar impaired motion.

用缆索驱动下肢康复外骨骼(C-LREX)模拟脑卒中步态障碍矫正。
电缆驱动的外骨骼最近在中风幸存者的康复中显示出巨大的希望。数值建模/仿真为外骨骼的设计参数微调提供了一种成本和时间有效的方法,从而减少了昂贵和耗时的实验试验的需要。本研究研究了使用电缆驱动的下肢康复外骨骼(C-LREX)来纠正中风受损的步态并跟踪参考健康轨迹。研究了不同程度的损伤和受试者的人体测量变化对模型性能的影响。C-LREX模型成功地帮助受损肢体跟踪所有受损步态模式的参考轨迹,除了更高程度的损伤(髋关节运动偏差范围为bbb20°)。当电缆布线被缩放以适应用户的人体测量时,受试者的人体测量变化不影响轨迹跟踪。本研究证实,C-LREX模型可以在矢状面模拟各种受损下肢步态模式,并确定纠正损伤所需的索张力要求。未来的工作包括扩展框架以纳入正面运动,并验证C-LREX在辅助双面受损运动方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信