Andrew M Birnbaum, Adam Buchwald, Peter Turkeltaub, Adam Jacks, George Carr, Shreya Kannan, Yu Huang, Abhisheck Datta, Lucas C Parra, Lukas A Hirsch
{"title":"Full-head segmentation of MRI with abnormal brain anatomy: model and data release.","authors":"Andrew M Birnbaum, Adam Buchwald, Peter Turkeltaub, Adam Jacks, George Carr, Shreya Kannan, Yu Huang, Abhisheck Datta, Lucas C Parra, Lukas A Hirsch","doi":"10.1117/1.JMI.12.5.054001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Our goal was to develop a deep network for whole-head segmentation, including clinical magnetic resonance imaging (MRI) with abnormal anatomy, and compile the first public benchmark dataset for this purpose. We collected 98 MRIs with volumetric segmentation labels for a diverse set of human subjects, including normal and abnormal anatomy in clinical cases of stroke and disorders of consciousness.</p><p><strong>Approach: </strong>Training labels were generated by manually correcting initial automated segmentations for skin/scalp, skull, cerebro-spinal fluid, gray matter, white matter, air cavity, and extracephalic air. We developed a \"MultiAxial\" network consisting of three 2D U-Net that operate independently in sagittal, axial, and coronal planes, which are then combined to produce a single 3D segmentation.</p><p><strong>Results: </strong>The MultiAxial network achieved a test-set Dice scores of <math><mrow><mn>0.88</mn> <mo>±</mo> <mn>0.04</mn></mrow> </math> (median ± interquartile range) on whole-head segmentation, including gray and white matter. This was compared with <math><mrow><mn>0.86</mn> <mo>±</mo> <mn>0.04</mn></mrow> </math> for Multipriors and <math><mrow><mn>0.79</mn> <mo>±</mo> <mn>0.10</mn></mrow> </math> for SPM12, two standard tools currently available for this task. The MultiAxial network gains in robustness by avoiding the need for coregistration with an atlas. It performed well in regions with abnormal anatomy and on images that have been de-identified. It enables more accurate and robust current flow modeling when incorporated into ROAST, a widely used modeling toolbox for transcranial electric stimulation.</p><p><strong>Conclusions: </strong>We are releasing a new state-of-the-art tool for whole-head MRI segmentation in abnormal anatomy, along with the largest volume of labeled clinical head MRIs, including labels for nonbrain structures. Together, the model and data may serve as a benchmark for future efforts.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"054001"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.5.054001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Our goal was to develop a deep network for whole-head segmentation, including clinical magnetic resonance imaging (MRI) with abnormal anatomy, and compile the first public benchmark dataset for this purpose. We collected 98 MRIs with volumetric segmentation labels for a diverse set of human subjects, including normal and abnormal anatomy in clinical cases of stroke and disorders of consciousness.
Approach: Training labels were generated by manually correcting initial automated segmentations for skin/scalp, skull, cerebro-spinal fluid, gray matter, white matter, air cavity, and extracephalic air. We developed a "MultiAxial" network consisting of three 2D U-Net that operate independently in sagittal, axial, and coronal planes, which are then combined to produce a single 3D segmentation.
Results: The MultiAxial network achieved a test-set Dice scores of (median ± interquartile range) on whole-head segmentation, including gray and white matter. This was compared with for Multipriors and for SPM12, two standard tools currently available for this task. The MultiAxial network gains in robustness by avoiding the need for coregistration with an atlas. It performed well in regions with abnormal anatomy and on images that have been de-identified. It enables more accurate and robust current flow modeling when incorporated into ROAST, a widely used modeling toolbox for transcranial electric stimulation.
Conclusions: We are releasing a new state-of-the-art tool for whole-head MRI segmentation in abnormal anatomy, along with the largest volume of labeled clinical head MRIs, including labels for nonbrain structures. Together, the model and data may serve as a benchmark for future efforts.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.