{"title":"Comprehensive noise reduction in single-cell data with the RECODE platform.","authors":"Yusuke Imoto","doi":"10.1016/j.crmeth.2025.101178","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell sequencing enables genome- and epigenome-wide profiling of thousands of individual cells, offering unprecedented biological insights. However, technical noise and batch effects obscure high-resolution structures, hindering rare-cell-type detection and cross-dataset comparisons. To comprehensively address these challenges, this study upgrades RECODE, a high-dimensional statistics-based tool for technical noise reduction in single-cell RNA sequencing (RNA-seq), to include a function called iRECODE, which simultaneously reduces technical and batch noise. Further, RECODE's applicability is extended to diverse single-cell modalities, including single-cell high-throughput chromosome conformation capture (Hi-C) and spatial transcriptomics. Recent improvements in the algorithm have substantially enhanced both accuracy and computational efficiency. The RECODE platform thus provides a robust and versatile solution for noise mitigation, enabling more accurate downstream analyses across transcriptomic, epigenomic, and spatial domains.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101178"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell sequencing enables genome- and epigenome-wide profiling of thousands of individual cells, offering unprecedented biological insights. However, technical noise and batch effects obscure high-resolution structures, hindering rare-cell-type detection and cross-dataset comparisons. To comprehensively address these challenges, this study upgrades RECODE, a high-dimensional statistics-based tool for technical noise reduction in single-cell RNA sequencing (RNA-seq), to include a function called iRECODE, which simultaneously reduces technical and batch noise. Further, RECODE's applicability is extended to diverse single-cell modalities, including single-cell high-throughput chromosome conformation capture (Hi-C) and spatial transcriptomics. Recent improvements in the algorithm have substantially enhanced both accuracy and computational efficiency. The RECODE platform thus provides a robust and versatile solution for noise mitigation, enabling more accurate downstream analyses across transcriptomic, epigenomic, and spatial domains.