Ce Yang, Bingbing Li, Hongqiang Yu, Yan Wang, Zhenghong An, Manying Chen, Chaoying He
{"title":"GmCDC7 is involved in coordinating seed size and quality in soybean.","authors":"Ce Yang, Bingbing Li, Hongqiang Yu, Yan Wang, Zhenghong An, Manying Chen, Chaoying He","doi":"10.1007/s00122-025-05039-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>We revealed essential roles of GmCDC7 in modulating seed size/weight and seed protein/oil content in soybean, presenting potential new targets for improving yield and quality of soybean and other crops. Seed size/weight is a critical factor determining crop yield; however, a limited number of genes regulating this trait have been characterized in soybean. In this study, we identified a Glycine max CELL DIVISION CYCLE 7 (GmCDC7) and revealed its essential roles in seed development. The putative GmCDC7 was highly conserved in both sequences and structure across various species. GmCDC7 transcripts were detectable in multiple tissues, with peak expression occurring during early seed development, while the GmCDC7 proteins were predominantly localized within the nucleus. CRISPR/Cas9-mediated knockout of GmCDC7 led to a significant increase in seed size and 100-seed weight, while overexpression of this gene resulted in a reduction in both seed size and weight. Further cytological analysis demonstrated that GmCDC7 promoted cell expansion and inhibited cell proliferation in seeds. Notably, the gene-edited gmcdc7 mutants showed a substantial increase in protein content alongside a reduction in oil content in seeds. Correspondingly, transcriptomic analyses revealed that GmCDC7 may significantly influence multifaceted regulatory pathways related to cell cycle-related activities, storage protein accumulation, and lipid transport and metabolism during seed development. These findings suggest that GmCDC7 plays pivotal roles in modulating seed size/weight and quality, offering new gene resources and insights into biotechnological strategies for soybean breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 10","pages":"253"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-05039-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: We revealed essential roles of GmCDC7 in modulating seed size/weight and seed protein/oil content in soybean, presenting potential new targets for improving yield and quality of soybean and other crops. Seed size/weight is a critical factor determining crop yield; however, a limited number of genes regulating this trait have been characterized in soybean. In this study, we identified a Glycine max CELL DIVISION CYCLE 7 (GmCDC7) and revealed its essential roles in seed development. The putative GmCDC7 was highly conserved in both sequences and structure across various species. GmCDC7 transcripts were detectable in multiple tissues, with peak expression occurring during early seed development, while the GmCDC7 proteins were predominantly localized within the nucleus. CRISPR/Cas9-mediated knockout of GmCDC7 led to a significant increase in seed size and 100-seed weight, while overexpression of this gene resulted in a reduction in both seed size and weight. Further cytological analysis demonstrated that GmCDC7 promoted cell expansion and inhibited cell proliferation in seeds. Notably, the gene-edited gmcdc7 mutants showed a substantial increase in protein content alongside a reduction in oil content in seeds. Correspondingly, transcriptomic analyses revealed that GmCDC7 may significantly influence multifaceted regulatory pathways related to cell cycle-related activities, storage protein accumulation, and lipid transport and metabolism during seed development. These findings suggest that GmCDC7 plays pivotal roles in modulating seed size/weight and quality, offering new gene resources and insights into biotechnological strategies for soybean breeding.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.