SpliPath enhances disease gene discovery in case-control analyses of rare splice-altering genetic variants.

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Yan Wang, Charlotte van Dijk, Ilia Timpanaro, Paul Hop, Brendan Kenna, Maarten Kooyman, Eleonora Aronica, R Jeroen Pasterkamp, Leonard H van den Berg, Johnathan Cooper-Knock, Jan H Veldink, Kevin Kenna
{"title":"SpliPath enhances disease gene discovery in case-control analyses of rare splice-altering genetic variants.","authors":"Yan Wang, Charlotte van Dijk, Ilia Timpanaro, Paul Hop, Brendan Kenna, Maarten Kooyman, Eleonora Aronica, R Jeroen Pasterkamp, Leonard H van den Berg, Johnathan Cooper-Knock, Jan H Veldink, Kevin Kenna","doi":"10.1016/j.crmeth.2025.101176","DOIUrl":null,"url":null,"abstract":"<p><p>We developed SpliPath as a generalizable framework to discover disease associations mediated by rare variants that induce experimentally supported mRNA splicing defects. Our approach integrates components of burden tests (BTs), traditional splicing quantitative trait locus (sQTL) analyses, and sequence-to-function AI models (SpliceAI and Pangolin). Central to the workings of SpliPath is our concept of collapsed rare variant splicing QTL (crsQTL). crsQTL groups rare variants that are predicted to alter splicing in the same way, specifically by linking them to shared splice junctions observed in independent (unpaired) RNA sequencing (RNA-seq) datasets. We demonstrate the utility of SpliPath through applications in amyotrophic lateral sclerosis (ALS). Through this, we showcase scenarios where SpliPath detects genetic associations that cannot be recovered by more simplistic combinations of BT and SpliceAI. We also nominate crsQTL for splice defects detected in large-scale analyses of ALS patient tissue.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101176"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We developed SpliPath as a generalizable framework to discover disease associations mediated by rare variants that induce experimentally supported mRNA splicing defects. Our approach integrates components of burden tests (BTs), traditional splicing quantitative trait locus (sQTL) analyses, and sequence-to-function AI models (SpliceAI and Pangolin). Central to the workings of SpliPath is our concept of collapsed rare variant splicing QTL (crsQTL). crsQTL groups rare variants that are predicted to alter splicing in the same way, specifically by linking them to shared splice junctions observed in independent (unpaired) RNA sequencing (RNA-seq) datasets. We demonstrate the utility of SpliPath through applications in amyotrophic lateral sclerosis (ALS). Through this, we showcase scenarios where SpliPath detects genetic associations that cannot be recovered by more simplistic combinations of BT and SpliceAI. We also nominate crsQTL for splice defects detected in large-scale analyses of ALS patient tissue.

SpliPath在罕见剪接改变基因变异的病例对照分析中增强了疾病基因的发现。
我们开发了SpliPath作为一个可推广的框架,以发现由诱导实验支持的mRNA剪接缺陷的罕见变异介导的疾病关联。我们的方法集成了负荷测试(bt)、传统剪接数量性状位点(sQTL)分析和序列到功能的人工智能模型(SpliceAI和穿山甲)。SpliPath工作的核心是我们的坍缩罕见变体剪接QTL (crsQTL)概念。crsQTL将预测以相同方式改变剪接的罕见变异分组,特别是通过将它们与独立(未配对)RNA测序(RNA-seq)数据集中观察到的共享剪接连接联系起来。我们通过在肌萎缩性侧索硬化症(ALS)中的应用证明SpliPath的效用。通过这一点,我们展示了SpliPath检测基因关联的场景,这些关联不能通过更简单的BT和SpliceAI组合来恢复。我们还提名crsQTL用于在ALS患者组织的大规模分析中检测到的剪接缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信