{"title":"Decoding the base flipping mechanism of the SET- and RING-associated (SRA) domain of the epigenetic UHRF1 protein.","authors":"Dipanjan Mukherjee, Stefano Ciaco, Lara Martinez-Fernandez, Krishna Gavvala, Elisa Bombarda, Aurélie Bourdérioux, Dmytro Dziuba, Fabien Hanser, Nicolas Humbert, Aqib Javed, Marc Mousli, Pankhi Singh, Yitzhak Tor, Roberto Improta, Mattia Mori, Yves Mély","doi":"10.1093/nar/gkaf909","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays a pivotal role in replicating DNA methylation patterns during cell division. Acting as a DNA reader, UHRF1, via its SET- and RING-associated (SRA) domain, recognizes hemi-methylated (HM) CpG sites and flips 5-methylcytosine (5mC) nucleobases. This flipping triggers DNA methyltransferase 1 (DNMT1) recruitment to methylate cytosine in the complementary strand. To investigate the SRA-induced base-flipping mechanism, we introduced thienoguanosine (thG), a fluorescent guanosine analogue, at four positions in HM and non-methylated duplexes. The interactions of these labelled duplexes with wild-type SRA and a G448D mutant (incapable of base-flipping) were monitored using a combination of stopped-flow fluorescence measurements, molecular dynamics simulations, and quantum mechanical calculations. We show that 5mC and C residues are flipped with similar rate constants. However, while C residues rapidly revert to their original state, enabling SRA to continue reading or dissociate, SRA complexes with flipped 5mC undergo a slow conformational rearrangement, leading to the final conformation crucial for DNMT1 recruitment. Taken together, our findings suggest that base flipping is used to discriminate 5mC from C residues, while the ensuing conformational rearrangement drives DNMT1 recruitment.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 17","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf909","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays a pivotal role in replicating DNA methylation patterns during cell division. Acting as a DNA reader, UHRF1, via its SET- and RING-associated (SRA) domain, recognizes hemi-methylated (HM) CpG sites and flips 5-methylcytosine (5mC) nucleobases. This flipping triggers DNA methyltransferase 1 (DNMT1) recruitment to methylate cytosine in the complementary strand. To investigate the SRA-induced base-flipping mechanism, we introduced thienoguanosine (thG), a fluorescent guanosine analogue, at four positions in HM and non-methylated duplexes. The interactions of these labelled duplexes with wild-type SRA and a G448D mutant (incapable of base-flipping) were monitored using a combination of stopped-flow fluorescence measurements, molecular dynamics simulations, and quantum mechanical calculations. We show that 5mC and C residues are flipped with similar rate constants. However, while C residues rapidly revert to their original state, enabling SRA to continue reading or dissociate, SRA complexes with flipped 5mC undergo a slow conformational rearrangement, leading to the final conformation crucial for DNMT1 recruitment. Taken together, our findings suggest that base flipping is used to discriminate 5mC from C residues, while the ensuing conformational rearrangement drives DNMT1 recruitment.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.