{"title":"Domain-Specific Impacts of Spike Protein Mutations on Infectivity and Antibody Escape in SARS-CoV-2 Omicron BA.1.","authors":"Tae-Hun Kim, Sojung Bae, Jinjong Myoung","doi":"10.4014/jmb.2507.07040","DOIUrl":null,"url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic began in Wuhan, China in late 2019, rapidly spreading worldwide and causing the COVID-19 pandemic. The virus evolved through multiple variants, with Omicron (first detected in late 2021) becoming dominant due to its extensive spike mutations, which enhanced immune evasion despite reduced infectivity compared to earlier strains. Here, we systematically evaluated the functional consequences of these mutations by generating pseudoviruses expressing spike proteins with domain-specific alterations. Mutations in the N-terminal domain (NTD) significantly enhanced pseudoviral infectivity, while receptor-binding domain (RBD) mutations markedly reduced infectivity. Importantly, NTD-mediated enhancement was attenuated when combined with RBD mutations, highlighting a complex interplay between spike regions. Despite lower infectivity compared to Delta, BA.1 pseudoviruses harboring RBD mutations exhibited robust resistance to neutralizing monoclonal antibodies, including casirivimab and imdevimab, with IC<sub>50</sub> values exceeding assay limits. These findings indicate that Omicron BA.1's rapid global spread is driven by enhanced immune evasion conferred by RBD mutations, even at the expense of viral entry efficiency. Our domain-specific analysis underscores the critical roles of spike protein mutations in shaping Omicron BA.1's transmissibility and antibody escape, informing strategies for therapeutic and vaccine development.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2507040"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2507.07040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic began in Wuhan, China in late 2019, rapidly spreading worldwide and causing the COVID-19 pandemic. The virus evolved through multiple variants, with Omicron (first detected in late 2021) becoming dominant due to its extensive spike mutations, which enhanced immune evasion despite reduced infectivity compared to earlier strains. Here, we systematically evaluated the functional consequences of these mutations by generating pseudoviruses expressing spike proteins with domain-specific alterations. Mutations in the N-terminal domain (NTD) significantly enhanced pseudoviral infectivity, while receptor-binding domain (RBD) mutations markedly reduced infectivity. Importantly, NTD-mediated enhancement was attenuated when combined with RBD mutations, highlighting a complex interplay between spike regions. Despite lower infectivity compared to Delta, BA.1 pseudoviruses harboring RBD mutations exhibited robust resistance to neutralizing monoclonal antibodies, including casirivimab and imdevimab, with IC50 values exceeding assay limits. These findings indicate that Omicron BA.1's rapid global spread is driven by enhanced immune evasion conferred by RBD mutations, even at the expense of viral entry efficiency. Our domain-specific analysis underscores the critical roles of spike protein mutations in shaping Omicron BA.1's transmissibility and antibody escape, informing strategies for therapeutic and vaccine development.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.