A novel spatiotemporal model with advanced feature extraction and unified brain network for depression detection using electroencephalogram signals.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-09-17 eCollection Date: 2025-09-01 DOI:10.1098/rsos.242039
O A Oyinlola, K A Gbolagade, I O Lasisi, A W Asaju- Gbolagade
{"title":"A novel spatiotemporal model with advanced feature extraction and unified brain network for depression detection using electroencephalogram signals.","authors":"O A Oyinlola, K A Gbolagade, I O Lasisi, A W Asaju- Gbolagade","doi":"10.1098/rsos.242039","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying depression using electroencephalogram (EEG) data is a formidable challenge because of the intricacy of cerebral networks and substantial individual variability in neural activity. Conventional models often fail to (i) include the EEG brain connectivity beyond simple paired interactions, (ii) account for brain inter-channel spatial relationships and (iii) integrate a variety of EEG-related features. Addressing these shortcomings, this article presents a novel model, a unified brain network that captures multiple spatiotemporal features that leverage a K-Nearest Neighbour (KNN)-based channel-channel relational matrix and Graph Convolution Gate Recurrent Unit (GCGRU) for depression detection and classification from EEG data, combining Graph Convolutional Networks with Gated Recurrent Units to process both spatial and temporal features of EEG signals. Experimental results demonstrate that the proposed model achieves significant accuracy of 83.67% in major depression disorder (MDD) detection and, with the F1-score, recall and precision reaching 84, 84 and 84%, respectively. Compared with the existing state-of-the-art models for depression detection using EEG, the proposed model achieves 8% improvement in the accuracy of major depressive disorder (MDD) detection.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 9","pages":"242039"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.242039","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying depression using electroencephalogram (EEG) data is a formidable challenge because of the intricacy of cerebral networks and substantial individual variability in neural activity. Conventional models often fail to (i) include the EEG brain connectivity beyond simple paired interactions, (ii) account for brain inter-channel spatial relationships and (iii) integrate a variety of EEG-related features. Addressing these shortcomings, this article presents a novel model, a unified brain network that captures multiple spatiotemporal features that leverage a K-Nearest Neighbour (KNN)-based channel-channel relational matrix and Graph Convolution Gate Recurrent Unit (GCGRU) for depression detection and classification from EEG data, combining Graph Convolutional Networks with Gated Recurrent Units to process both spatial and temporal features of EEG signals. Experimental results demonstrate that the proposed model achieves significant accuracy of 83.67% in major depression disorder (MDD) detection and, with the F1-score, recall and precision reaching 84, 84 and 84%, respectively. Compared with the existing state-of-the-art models for depression detection using EEG, the proposed model achieves 8% improvement in the accuracy of major depressive disorder (MDD) detection.

Abstract Image

Abstract Image

Abstract Image

一种基于脑电图信号的基于高级特征提取和统一脑网络的抑郁症检测时空模型。
由于大脑网络的复杂性和神经活动的个体差异性,使用脑电图(EEG)数据识别抑郁症是一项艰巨的挑战。传统模型往往不能(i)包括脑电图在简单配对交互之外的脑连接,(ii)考虑脑通道间的空间关系,(iii)整合各种脑电图相关特征。针对这些缺点,本文提出了一个新的模型,一个统一的大脑网络,利用基于k -近邻(KNN)的通道-通道关系矩阵和图卷积门递归单元(GCGRU)捕获多个时空特征,从EEG数据中进行抑郁检测和分类,结合图卷积网络和门控递归单元来处理EEG信号的空间和时间特征。实验结果表明,该模型对重度抑郁症(MDD)的检测准确率达到83.67%,在f1评分下,查全率和查准率分别达到84,84和84%。与现有的基于EEG的抑郁症检测模型相比,该模型对重度抑郁症(MDD)的检测准确率提高了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信