Ajab Khan, Muhammad Aasim, Noor Shad Bibi, Haris Saddique, Hizb Ullah, Zohaib Khan, Umar Aziz, Nadir Zaman Khan, Waqar Ali, Noor Muhammad
{"title":"Utilization of physicochemical approach to propose a strategy for biofilm inhibition.","authors":"Ajab Khan, Muhammad Aasim, Noor Shad Bibi, Haris Saddique, Hizb Ullah, Zohaib Khan, Umar Aziz, Nadir Zaman Khan, Waqar Ali, Noor Muhammad","doi":"10.1080/08927014.2025.2559318","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilm development, which occurs on numerous surfaces, can reduce the efficiency and increase operating costs in bioprocesses and fermentation. The current study proposes a strategy for biofilm inhibition by investigating the interactions between microorganisms and surfaces using an extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) approach and cell partition index (CPI) technique. Glass slide and Petri dish surfaces were modified with different surfactants. The results show that modification increased CPI values and altered the interaction behavior from attractive to repulsive, between microbial cells and different surfaces. Secondary energy values calculated by xDLVO theory between microbial cells and modified surfaces were repulsive. Meanwhile, the secondary energy values calculated for microbial cells and unmodified glass slide (-31 <i>k</i>T) and Petri dish surfaces (-27 <i>k</i>T) were attractive between cells and surfaces. The current study has opened a window for research in the field of biofilm inhibition through a surface energetics approach.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-12"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2559318","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilm development, which occurs on numerous surfaces, can reduce the efficiency and increase operating costs in bioprocesses and fermentation. The current study proposes a strategy for biofilm inhibition by investigating the interactions between microorganisms and surfaces using an extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) approach and cell partition index (CPI) technique. Glass slide and Petri dish surfaces were modified with different surfactants. The results show that modification increased CPI values and altered the interaction behavior from attractive to repulsive, between microbial cells and different surfaces. Secondary energy values calculated by xDLVO theory between microbial cells and modified surfaces were repulsive. Meanwhile, the secondary energy values calculated for microbial cells and unmodified glass slide (-31 kT) and Petri dish surfaces (-27 kT) were attractive between cells and surfaces. The current study has opened a window for research in the field of biofilm inhibition through a surface energetics approach.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.