Multiverse simulation to explore the impact of analytical choices on type I and type II errors in a reaction time study.

IF 3.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Miklos Bognar, Marton A Varga, Don van Ravenzwaaij, Zoltan Kekecs, James A Grange, Mate Gyurkovics, Balazs Aczel
{"title":"Multiverse simulation to explore the impact of analytical choices on type I and type II errors in a reaction time study.","authors":"Miklos Bognar, Marton A Varga, Don van Ravenzwaaij, Zoltan Kekecs, James A Grange, Mate Gyurkovics, Balazs Aczel","doi":"10.3758/s13428-025-02807-y","DOIUrl":null,"url":null,"abstract":"<p><p>Researcher degrees of freedom in data analysis present significant challenges in social sciences, where different analytical decisions can lead to varying conclusions. In this work, we propose an example of an exploratory multiverse simulation to empirically compare various decision pathways to identify an effect's sensitivity to different analytical choices. The approach is demonstrated on the congruency sequence effect (CSE), a well-studied phenomenon in cognitive control research. We reviewed existing literature to identify common non-theory-specific analytical decisions, such as outlier exclusion criteria and hypothesis testing methods, and incorporated these into our simulation framework. Using 20,000 simulated datasets, we compared the true positive rates (TPR) and false positive rates (FPR) across 50 different decision pathways, resulting in a total of 1 million analyses. Our results indicate substantial differences in power and type I error rates across the analytical pathways, with some posing a significant risk of producing high false positives. The findings underscore the importance of running extensive simulations to investigate different data handling and hypothesis testing approaches in certain research fields. This case study serves as an example for conducting similar simulation procedures in research fields characterized by high variability in analytical decisions when investigating an otherwise widely accepted effect.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 10","pages":"291"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02807-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Researcher degrees of freedom in data analysis present significant challenges in social sciences, where different analytical decisions can lead to varying conclusions. In this work, we propose an example of an exploratory multiverse simulation to empirically compare various decision pathways to identify an effect's sensitivity to different analytical choices. The approach is demonstrated on the congruency sequence effect (CSE), a well-studied phenomenon in cognitive control research. We reviewed existing literature to identify common non-theory-specific analytical decisions, such as outlier exclusion criteria and hypothesis testing methods, and incorporated these into our simulation framework. Using 20,000 simulated datasets, we compared the true positive rates (TPR) and false positive rates (FPR) across 50 different decision pathways, resulting in a total of 1 million analyses. Our results indicate substantial differences in power and type I error rates across the analytical pathways, with some posing a significant risk of producing high false positives. The findings underscore the importance of running extensive simulations to investigate different data handling and hypothesis testing approaches in certain research fields. This case study serves as an example for conducting similar simulation procedures in research fields characterized by high variability in analytical decisions when investigating an otherwise widely accepted effect.

Abstract Image

Abstract Image

Abstract Image

多元宇宙模拟,探讨在反应时间研究中,分析选择对I型和II型错误的影响。
研究人员在数据分析中的自由度在社会科学中提出了重大挑战,其中不同的分析决策可能导致不同的结论。在这项工作中,我们提出了一个探索性多元宇宙模拟的例子,以经验比较各种决策途径,以确定影响对不同分析选择的敏感性。该方法在认知控制研究中被广泛研究的一致性序列效应(CSE)上得到了验证。我们回顾了现有文献,以确定常见的非理论特异性分析决策,如异常值排除标准和假设检验方法,并将这些纳入我们的模拟框架。使用20,000个模拟数据集,我们比较了50种不同决策途径的真阳性率(TPR)和假阳性率(FPR),总共进行了100万次分析。我们的结果表明,在分析途径中的功率和I型错误率存在实质性差异,其中一些存在产生高假阳性的重大风险。这些发现强调了在某些研究领域进行广泛模拟以调查不同数据处理和假设检验方法的重要性。本案例研究作为在研究广泛接受的效应时,在分析决策中具有高度可变性的研究领域中进行类似模拟程序的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信