Optimized deep learning-accelerated single-breath-hold abdominal HASTE with and without fat saturation improves and accelerates abdominal imaging at 3 Tesla.
IF 3.2 3区 医学Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Qinxuan Tan, Felix Kubicka, Dominik Nickel, Elisabeth Weiland, Bernd Hamm, Dominik Geisel, Moritz Wagner, Thula C Walter-Rittel
{"title":"Optimized deep learning-accelerated single-breath-hold abdominal HASTE with and without fat saturation improves and accelerates abdominal imaging at 3 Tesla.","authors":"Qinxuan Tan, Felix Kubicka, Dominik Nickel, Elisabeth Weiland, Bernd Hamm, Dominik Geisel, Moritz Wagner, Thula C Walter-Rittel","doi":"10.1186/s12880-025-01838-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning-accelerated single-shot turbo-spin-echo techniques (DL-HASTE) enable single-breath-hold T2-weighted abdominal imaging. However, studies evaluating the image quality of DL-HASTE with and without fat saturation (FS) remain limited. This study aimed to prospectively evaluate the technical feasibility and image quality of abdominal DL-HASTE with and without FS at 3 Tesla.</p><p><strong>Materials and methods: </strong>DL-HASTE of the upper abdomen was acquired with variable sequence parameters regarding FS, flip angle (FA) and field of view (FOV) in 10 healthy volunteers and 50 patients. DL-HASTE sequences were compared to clinical sequences (HASTE, HASTE-FS and T2-TSE-FS BLADE). Two radiologists independently assessed the sequences regarding scores of overall image quality, delineation of abdominal organs, artifacts and fat saturation using a Likert scale (range: 1-5).</p><p><strong>Results: </strong>Breath-hold time of DL-HASTE and DL-HASTE-FS was 21 ± 2 s with fixed FA and 20 ± 2 s with variable FA (p < 0.001), with no overall image quality difference (p > 0.05). DL-HASTE required a 10% larger FOV than DL-HASTE-FS to avoid aliasing artifacts from subcutaneous fat. Both DL-HASTE and DL-HASTE-FS had significantly higher overall image quality scores than standard HASTE acquisitions (DL-HASTE vs. HASTE: 4.8 ± 0.40 vs. 4.1 ± 0.50; DL-HASTE-FS vs. HASTE-FS: 4.6 ± 0.50 vs. 3.6 ± 0.60; p < 0.001). Compared to the T2-TSE-FS BLADE, DL-HASTE-FS provided higher overall image quality (4.6 ± 0.50 vs. 4.3 ± 0.63, p = 0.011). DL-HASTE achieved significant higher image quality (p = 0.006) and higher sharpness score of organs compared to DL-HASTE-FS (p < 0.001).</p><p><strong>Conclusion: </strong>Deep learning-accelerated HASTE with and without fat saturation were both feasible at 3 Tesla and showed improved image quality compared to conventional sequences.</p><p><strong>Trial registration: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"369"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01838-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deep learning-accelerated single-shot turbo-spin-echo techniques (DL-HASTE) enable single-breath-hold T2-weighted abdominal imaging. However, studies evaluating the image quality of DL-HASTE with and without fat saturation (FS) remain limited. This study aimed to prospectively evaluate the technical feasibility and image quality of abdominal DL-HASTE with and without FS at 3 Tesla.
Materials and methods: DL-HASTE of the upper abdomen was acquired with variable sequence parameters regarding FS, flip angle (FA) and field of view (FOV) in 10 healthy volunteers and 50 patients. DL-HASTE sequences were compared to clinical sequences (HASTE, HASTE-FS and T2-TSE-FS BLADE). Two radiologists independently assessed the sequences regarding scores of overall image quality, delineation of abdominal organs, artifacts and fat saturation using a Likert scale (range: 1-5).
Results: Breath-hold time of DL-HASTE and DL-HASTE-FS was 21 ± 2 s with fixed FA and 20 ± 2 s with variable FA (p < 0.001), with no overall image quality difference (p > 0.05). DL-HASTE required a 10% larger FOV than DL-HASTE-FS to avoid aliasing artifacts from subcutaneous fat. Both DL-HASTE and DL-HASTE-FS had significantly higher overall image quality scores than standard HASTE acquisitions (DL-HASTE vs. HASTE: 4.8 ± 0.40 vs. 4.1 ± 0.50; DL-HASTE-FS vs. HASTE-FS: 4.6 ± 0.50 vs. 3.6 ± 0.60; p < 0.001). Compared to the T2-TSE-FS BLADE, DL-HASTE-FS provided higher overall image quality (4.6 ± 0.50 vs. 4.3 ± 0.63, p = 0.011). DL-HASTE achieved significant higher image quality (p = 0.006) and higher sharpness score of organs compared to DL-HASTE-FS (p < 0.001).
Conclusion: Deep learning-accelerated HASTE with and without fat saturation were both feasible at 3 Tesla and showed improved image quality compared to conventional sequences.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.