From biosensing to perception: Collaborative few-shot learning for explainable digital biomarker identification in high-dimensional biomedical spectra

IF 10.5 1区 生物学 Q1 BIOPHYSICS
Junhan Yang , Chen Shen , Ningtao Cheng
{"title":"From biosensing to perception: Collaborative few-shot learning for explainable digital biomarker identification in high-dimensional biomedical spectra","authors":"Junhan Yang ,&nbsp;Chen Shen ,&nbsp;Ningtao Cheng","doi":"10.1016/j.bios.2025.117980","DOIUrl":null,"url":null,"abstract":"<div><div>The application of <em>in vitro</em> diagnostic biosensors for early cancer detection remains challenging due to the insufficient representation by a few molecular biomarkers. Digital biomarkers promise comprehensive disease phenotyping but face constraints of clinical data scarcity and obstacles of limited generalization. Here, we introduce Coupled Explainable Artificial Intelligence Recursive (CEAIR) learning, a computational framework that integrates computer vision and cooperative game theory for interpretable few-shot learning, enabling the extraction of domain-relevant digital biomarkers from high-dimensional surface-enhanced Raman spectroscopy biosensor data of limited serum samples. Applied to hepatocellular carcinoma detection, CEAIR-derived digital biomarkers significantly outperform circulating molecular biomarkers, achieving area under the curve values consistently exceeding 0.97 across multiple independent classifiers built with classic machine learning algorithms and demonstrating strong generalization upon external validation. Our findings underscore CEAIR's capacity to overcome fundamental limitations in generating clinically meaningful diagnostic knowledge from high-dimensional, small-sample biosensor data, learning reliable digital biomarkers for robust, non-invasive, and timely diagnosis of complex diseases.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"290 ","pages":"Article 117980"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325008565","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of in vitro diagnostic biosensors for early cancer detection remains challenging due to the insufficient representation by a few molecular biomarkers. Digital biomarkers promise comprehensive disease phenotyping but face constraints of clinical data scarcity and obstacles of limited generalization. Here, we introduce Coupled Explainable Artificial Intelligence Recursive (CEAIR) learning, a computational framework that integrates computer vision and cooperative game theory for interpretable few-shot learning, enabling the extraction of domain-relevant digital biomarkers from high-dimensional surface-enhanced Raman spectroscopy biosensor data of limited serum samples. Applied to hepatocellular carcinoma detection, CEAIR-derived digital biomarkers significantly outperform circulating molecular biomarkers, achieving area under the curve values consistently exceeding 0.97 across multiple independent classifiers built with classic machine learning algorithms and demonstrating strong generalization upon external validation. Our findings underscore CEAIR's capacity to overcome fundamental limitations in generating clinically meaningful diagnostic knowledge from high-dimensional, small-sample biosensor data, learning reliable digital biomarkers for robust, non-invasive, and timely diagnosis of complex diseases.
从生物传感到感知:高维生物医学光谱中可解释的数字生物标志物识别的协作少镜头学习。
由于少数分子生物标志物的代表性不足,体外诊断生物传感器在早期癌症检测中的应用仍然具有挑战性。数字生物标志物有望实现全面的疾病表型,但面临临床数据匮乏和有限推广障碍的限制。在这里,我们介绍了耦合可解释人工智能递归(CEAIR)学习,这是一个集成了计算机视觉和合作博弈论的计算框架,用于可解释的少镜头学习,能够从有限血清样本的高维表面增强拉曼光谱生物传感器数据中提取领域相关的数字生物标志物。应用于肝细胞癌检测,ceair衍生的数字生物标志物显著优于循环分子生物标志物,在使用经典机器学习算法构建的多个独立分类器中,曲线下面积值始终超过0.97,并在外部验证中表现出很强的泛化性。我们的研究结果强调了CEAIR能够克服从高维、小样本生物传感器数据中产生临床有意义的诊断知识的基本限制,学习可靠的数字生物标志物,以进行强大的、无创的、及时的复杂疾病诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信