Climate‐Resilient Energy Policies for Degraded Ecosystems: An AI and MCDA Approach to Balance Land Restoration and Regional Economic Development

IF 3.7 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES
Juan Li
{"title":"Climate‐Resilient Energy Policies for Degraded Ecosystems: An AI and MCDA Approach to Balance Land Restoration and Regional Economic Development","authors":"Juan Li","doi":"10.1002/ldr.70201","DOIUrl":null,"url":null,"abstract":"This study develops climate‐resilient energy policies for China's Loess Plateau, a region plagued by severe land degradation and economic challenges. It aims to balance ecological restoration with economic development under SSP2‐4.5 and SSP5‐8.5 climate scenarios, hypothesizing that integrating Artificial Intelligence (AI) and Multi‐Criteria Decision Analysis (MCDA) can effectively manage these issues. The goal is to formulate sustainable policies that reduce degradation while promoting growth. Utilizing Sentinel‐2 imagery (2015–2022), CMIP6 projections (2025–2050), socioeconomic data (2010–2022), and energy infrastructure details, the methodology involves three phases: predictive modeling via deep learning (CNN for land degradation classification at 92.3% accuracy; LSTM for energy demand forecasting), policy generation using reinforcement learning, and evaluation with a hybrid fuzzy‐VIKOR framework. Results feature a land degradation map showing severe issues in central and northern areas, energy demand rises (74% under SSP2‐4.5; 90% under SSP5‐8.5 by 2050), and five policy scenarios. Scenario 4, ranked highest (<jats:italic>Qᵢ</jats:italic> = 0.12), allocates 30% budget to solar, 20% to wind, and 7200 km<jats:sup>2</jats:sup> to afforestation, yielding 22% degradation reduction, 2.2% annual GDP growth, 18% GHG emissions cut by 2030, and ecosystem recovery (94.10% carbon fixation; 87.59% sand fixation). It supports SDGs 7 and 15.3, enhances social equity via community cooperatives, and aligns with China's 14th Five‐Year Plan (15% non‐fossil energy by 2025).","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"73 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.70201","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops climate‐resilient energy policies for China's Loess Plateau, a region plagued by severe land degradation and economic challenges. It aims to balance ecological restoration with economic development under SSP2‐4.5 and SSP5‐8.5 climate scenarios, hypothesizing that integrating Artificial Intelligence (AI) and Multi‐Criteria Decision Analysis (MCDA) can effectively manage these issues. The goal is to formulate sustainable policies that reduce degradation while promoting growth. Utilizing Sentinel‐2 imagery (2015–2022), CMIP6 projections (2025–2050), socioeconomic data (2010–2022), and energy infrastructure details, the methodology involves three phases: predictive modeling via deep learning (CNN for land degradation classification at 92.3% accuracy; LSTM for energy demand forecasting), policy generation using reinforcement learning, and evaluation with a hybrid fuzzy‐VIKOR framework. Results feature a land degradation map showing severe issues in central and northern areas, energy demand rises (74% under SSP2‐4.5; 90% under SSP5‐8.5 by 2050), and five policy scenarios. Scenario 4, ranked highest (Qᵢ = 0.12), allocates 30% budget to solar, 20% to wind, and 7200 km2 to afforestation, yielding 22% degradation reduction, 2.2% annual GDP growth, 18% GHG emissions cut by 2030, and ecosystem recovery (94.10% carbon fixation; 87.59% sand fixation). It supports SDGs 7 and 15.3, enhances social equity via community cooperatives, and aligns with China's 14th Five‐Year Plan (15% non‐fossil energy by 2025).
退化生态系统的气候适应性能源政策:基于AI和MCDA的土地恢复与区域经济发展平衡方法
本研究针对中国黄土高原这一土地退化严重、经济面临严峻挑战的地区,制定了具有气候适应性的能源政策。该研究的目标是在SSP2‐4.5和SSP5‐8.5气候情景下平衡生态恢复与经济发展,并假设人工智能(AI)和多准则决策分析(MCDA)相结合可以有效地管理这些问题。目标是制定在促进增长的同时减少退化的可持续政策。利用Sentinel‐2图像(2015-2022)、CMIP6预测(2025-2050)、社会经济数据(2010-2022)和能源基础设施细节,该方法包括三个阶段:通过深度学习进行预测建模(CNN用于土地退化分类,准确率为92.3%;LSTM用于能源需求预测),使用强化学习生成政策,以及使用混合模糊- VIKOR框架进行评估。结果显示,土地退化地图显示了中部和北部地区的严重问题,能源需求上升(到2050年,SSP2 - 4.5为74%,SSP5 - 8.5为90%),以及五种政策情景。情景4排名最高(Q′= 0.12),将30%的预算用于太阳能,20%用于风能,7200平方公里用于造林,到2030年减少22%的退化,2.2%的年GDP增长,18%的温室气体排放,以及生态系统的恢复(94.10%的碳固定,87.59%的沙固定)。它支持可持续发展目标7和15.3,通过社区合作社促进社会公平,并与中国的“十四五”规划(到2025年非化石能源占比达到15%)保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信