Deep Learning Approach With Coupled Weighted Loss Function for Estimation and Prediction of Soil Organic Carbon in China

IF 3.8 2区 农林科学 Q2 SOIL SCIENCE
Zhibo Zhang, Xiaodong Gao, Li Zhang, Xu Zhang, Xining Zhao
{"title":"Deep Learning Approach With Coupled Weighted Loss Function for Estimation and Prediction of Soil Organic Carbon in China","authors":"Zhibo Zhang,&nbsp;Xiaodong Gao,&nbsp;Li Zhang,&nbsp;Xu Zhang,&nbsp;Xining Zhao","doi":"10.1111/ejss.70189","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate estimation and projection of soil organic carbon (SOC) density is crucial for understanding the terrestrial carbon cycle and formulating carbon neutrality strategies. The increasing availability of SOC and related environmental data, coupled with advanced prediction models, has opened new opportunities for improving the accuracy of SOC (kg C m<sup>−2</sup>) predictions using data-driven methods. In this study, we developed a deep learning model TabTransformer_WT, by coupling the weighted mean squared error loss function with TabTransformer, to optimise estimation of surface (0–20 cm, SOC<sub>0–20</sub>) and profile (0–100 cm, SOC<sub>0–100</sub>) SOC in China. Using SOC observations and multi-source environmental covariates, we evaluated model performance through time-series-based 10-fold cross-validation across four periods (1979–1984, 2000–2004, 2005–2009 and 2010–2014) and compared it with machine learning and deep learning models (RF, SVR, CNN-1D, LSTM, RNN and TabTransformer). Our results indicate that TabTransformer_WT achieved the best prediction accuracy, with <i>R</i><sup>2</sup> improvements of 8%–37% for SOC<sub>0–20</sub> and 6%–38% for SOC<sub>0–100</sub>, and RMSE reductions of 0.31–1.07 and 0.99–2.39 kg C m<sup>−2</sup>, respectively. We applied the model to evaluate historical and future spatiotemporal evolution of SOC<sub>0–20</sub> and SOC<sub>0–100</sub> in China. Historical analysis (1979–2023) showed China's soil acted as a carbon sink with annual growth rates of 45 Tg C year<sup>−1</sup> for surface and 33.37 Tg C year<sup>−1</sup> for profile SOC. Future projections using CMIP6 data revealed slow SOC accumulation under SSP1-1.9 but decreasing trends under SSP2-4.5 and SSP5-8.5 scenarios, with the 0–100 cm layer experiencing the greatest loss (−30.64 Tg C year<sup>−1</sup>) under SSP5-8.5. This study provides a feasible method for large-scale SOC estimation and insights into SOC evolution under climate change.</p>\n </div>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://bsssjournals.onlinelibrary.wiley.com/doi/10.1111/ejss.70189","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation and projection of soil organic carbon (SOC) density is crucial for understanding the terrestrial carbon cycle and formulating carbon neutrality strategies. The increasing availability of SOC and related environmental data, coupled with advanced prediction models, has opened new opportunities for improving the accuracy of SOC (kg C m−2) predictions using data-driven methods. In this study, we developed a deep learning model TabTransformer_WT, by coupling the weighted mean squared error loss function with TabTransformer, to optimise estimation of surface (0–20 cm, SOC0–20) and profile (0–100 cm, SOC0–100) SOC in China. Using SOC observations and multi-source environmental covariates, we evaluated model performance through time-series-based 10-fold cross-validation across four periods (1979–1984, 2000–2004, 2005–2009 and 2010–2014) and compared it with machine learning and deep learning models (RF, SVR, CNN-1D, LSTM, RNN and TabTransformer). Our results indicate that TabTransformer_WT achieved the best prediction accuracy, with R2 improvements of 8%–37% for SOC0–20 and 6%–38% for SOC0–100, and RMSE reductions of 0.31–1.07 and 0.99–2.39 kg C m−2, respectively. We applied the model to evaluate historical and future spatiotemporal evolution of SOC0–20 and SOC0–100 in China. Historical analysis (1979–2023) showed China's soil acted as a carbon sink with annual growth rates of 45 Tg C year−1 for surface and 33.37 Tg C year−1 for profile SOC. Future projections using CMIP6 data revealed slow SOC accumulation under SSP1-1.9 but decreasing trends under SSP2-4.5 and SSP5-8.5 scenarios, with the 0–100 cm layer experiencing the greatest loss (−30.64 Tg C year−1) under SSP5-8.5. This study provides a feasible method for large-scale SOC estimation and insights into SOC evolution under climate change.

Abstract Image

Abstract Image

Abstract Image

基于耦合加权损失函数的中国土壤有机碳估算与预测的深度学习方法
准确估算和预测土壤有机碳(SOC)密度对于理解陆地碳循环和制定碳中和策略至关重要。SOC和相关环境数据的可用性不断增加,加上先进的预测模型,为使用数据驱动的方法提高SOC (kg cm - 2)预测的准确性开辟了新的机会。在这项研究中,我们开发了一个深度学习模型TabTransformer_WT,通过将加权均方误差损失函数与TabTransformer相结合,来优化中国表面(0-20 cm, SOC0-20)和剖面(0-100 cm, SOC0-100) SOC的估计。利用SOC观测和多源环境共变量,我们通过基于时间序列的4个时期(1979-1984年、2000-2004年、2005-2009年和2010-2014年)的10倍交叉验证评估了模型的性能,并将其与机器学习和深度学习模型(RF、SVR、CNN - 1D、LSTM、RNN和TabTransformer)进行了比较。结果表明,TabTransformer_WT具有最佳的预测精度,SOC0-20和SOC0-100的R2分别提高了8%-37%和6%-38%,RMSE分别降低了0.31-1.07和0.99-2.39 kg C m - 2。应用该模型对中国SOC0-20和SOC0-100的历史和未来时空演变进行了评价。历史分析(1979-2023)表明,中国土壤具有碳汇的作用,地表碳年增长率为45 Tg C,剖面碳年增长率为33.37 Tg C。利用CMIP6数据进行的未来预测显示,SSP1‐1.9情景下有机碳积累缓慢,但在SSP2‐4.5和SSP5‐8.5情景下有减少趋势,其中0-100 cm层在SSP5‐8.5情景下损失最大(- 30.64 Tg C - 1)。该研究为大规模土壤有机碳估算提供了一种可行的方法,并对气候变化下土壤有机碳的演化有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信