Harnessing Spatiotemporal Interaction of Redox Reactions Boosts Singlet Oxygen Generation in Electrocatalytic Dual-Membrane Systems

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Mengyao Gu, , , Yifan Gao, , , Haojie Ding, , , Zhonghua Fan, , , Yujiao Gao, , , Weijia Tao, , , Shuai Liang*, , and , Xia Huang, 
{"title":"Harnessing Spatiotemporal Interaction of Redox Reactions Boosts Singlet Oxygen Generation in Electrocatalytic Dual-Membrane Systems","authors":"Mengyao Gu,&nbsp;, ,&nbsp;Yifan Gao,&nbsp;, ,&nbsp;Haojie Ding,&nbsp;, ,&nbsp;Zhonghua Fan,&nbsp;, ,&nbsp;Yujiao Gao,&nbsp;, ,&nbsp;Weijia Tao,&nbsp;, ,&nbsp;Shuai Liang*,&nbsp;, and ,&nbsp;Xia Huang,&nbsp;","doi":"10.1021/acs.est.5c08644","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic membrane filtration (EMF) technology presents a transformative approach to efficient emerging contaminant removal by synergistically integrating electrochemical reactions with membrane separation. However, current EMF systems exhibit inadequate control and poor understanding of selective reactive oxygen species (ROS) generation, particularly singlet oxygen (<sup>1</sup>O<sub>2</sub>), which constrains target-specific degradation capability. Here, we engineered a graphite-felt-based electrocatalytic dual-membrane system to systematically reveal how anode–cathode reactions under spatiotemporal coupling regulate <sup>1</sup>O<sub>2</sub> generation by modulating pH and anode potential. In the optimal configuration (A–C_1), H<sup>+</sup> and O<sub>2</sub> were produced via oxygen evolution reaction at the upstream anode transport to the downstream cathode interface, creating an acidic environment and continuous oxygen supply conducive to <sup>1</sup>O<sub>2</sub> formation. Compared to the reverse configuration (C–A_1), the A–C_1 configuration enhances the generation of key intermediates (O<sub>2</sub>·<sup>–</sup> and H<sub>2</sub>O<sub>2</sub>), significantly boosting the <sup>1</sup>O<sub>2</sub> generation rate (371.9 μmol L<sup>–1</sup>min<sup>–1</sup>) and achieving improved energy efficiency (17.88 m<sup>3</sup> order kWh<sup>–1</sup>). This study establishes spatiotemporal-interfacial regulation principles, providing a theoretical foundation for developing highly selective EMF systems.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 38","pages":"20860–20870"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c08644","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic membrane filtration (EMF) technology presents a transformative approach to efficient emerging contaminant removal by synergistically integrating electrochemical reactions with membrane separation. However, current EMF systems exhibit inadequate control and poor understanding of selective reactive oxygen species (ROS) generation, particularly singlet oxygen (1O2), which constrains target-specific degradation capability. Here, we engineered a graphite-felt-based electrocatalytic dual-membrane system to systematically reveal how anode–cathode reactions under spatiotemporal coupling regulate 1O2 generation by modulating pH and anode potential. In the optimal configuration (A–C_1), H+ and O2 were produced via oxygen evolution reaction at the upstream anode transport to the downstream cathode interface, creating an acidic environment and continuous oxygen supply conducive to 1O2 formation. Compared to the reverse configuration (C–A_1), the A–C_1 configuration enhances the generation of key intermediates (O2· and H2O2), significantly boosting the 1O2 generation rate (371.9 μmol L–1min–1) and achieving improved energy efficiency (17.88 m3 order kWh–1). This study establishes spatiotemporal-interfacial regulation principles, providing a theoretical foundation for developing highly selective EMF systems.

Abstract Image

Abstract Image

利用氧化还原反应的时空相互作用促进电催化双膜系统中的单线态氧生成
电催化膜过滤(EMF)技术通过将电化学反应与膜分离协同结合,提出了一种有效去除新兴污染物的变革性方法。然而,目前的EMF系统对选择性活性氧(ROS)产生的控制和理解不足,特别是单线态氧(1O2),这限制了目标特异性降解能力。在这里,我们设计了一个基于石墨毡的电催化双膜系统,系统地揭示了时空耦合下阳极-阴极反应如何通过调节pH和阳极电位来调节1O2的产生。在最佳构型(A-C_1)下,在上游阳极向下游阴极界面输运过程中,通过析氧反应生成H+和O2,形成有利于1O2形成的酸性环境和连续供氧。与相反构型(C-A_1)相比,A-C_1构型促进了关键中间体(O2·-和H2O2)的生成,显著提高了1O2的生成速率(371.9 μmol L-1min-1),提高了能量效率(17.88 m3阶kWh-1)。本研究建立了时空界面调节原理,为开发高选择性电磁场系统提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信