Fully Automated Image-Based Multiplexing of Serial PET/CT Imaging for Facilitating Comprehensive Disease Phenotyping

Lalith Kumar Shiyam Sundar, Sebastian Gutschmayer, Manuel Pires, Daria Ferrara, Toni Nguyen, Yasser Gaber Abdelhafez, Benjamin Spencer, Simon R. Cherry, Ramsey D. Badawi, David Kersting, Wolfgang P. Fendler, Moon-Sung Kim, Martin Lyngby Lassen, Philip Hasbak, Fabian Schmidt, Pia Linder, Xingyu Mu, Zewen Jiang, Elisabetta M. Abenavoli, Roberto Sciagrà, Armin Frille, Hubert Wirtz, Swen Hesse, Osama Sabri, Dale Bailey, David Chan, Jason Callahan, Rodney J. Hicks, Thomas Beyer
{"title":"Fully Automated Image-Based Multiplexing of Serial PET/CT Imaging for Facilitating Comprehensive Disease Phenotyping","authors":"Lalith Kumar Shiyam Sundar, Sebastian Gutschmayer, Manuel Pires, Daria Ferrara, Toni Nguyen, Yasser Gaber Abdelhafez, Benjamin Spencer, Simon R. Cherry, Ramsey D. Badawi, David Kersting, Wolfgang P. Fendler, Moon-Sung Kim, Martin Lyngby Lassen, Philip Hasbak, Fabian Schmidt, Pia Linder, Xingyu Mu, Zewen Jiang, Elisabetta M. Abenavoli, Roberto Sciagrà, Armin Frille, Hubert Wirtz, Swen Hesse, Osama Sabri, Dale Bailey, David Chan, Jason Callahan, Rodney J. Hicks, Thomas Beyer","doi":"10.2967/jnumed.125.269688","DOIUrl":null,"url":null,"abstract":"<p>Combined PET/CT imaging provides critical insights into both anatomic and molecular processes, yet traditional single‐tracer approaches limit multidimensional disease phenotyping; to address this, we developed the PET Unified Multitracer Alignment (PUMA) framework—an open‐source, postprocessing tool that multiplexes serial PET/CT scans for comprehensive voxelwise tissue characterization. <strong>Methods:</strong> PUMA utilizes artificial intelligence–based CT segmentation from multiorgan objective segmentation to generate multilabel maps of 24 body regions, guiding a 2-step registration: affine alignment followed by symmetric diffeomorphic registration. Tracer images are then normalized and assigned to red–green–blue channels for simultaneous visualization of up to 3 tracers. The framework was evaluated on longitudinal PET/CT scans from 114 subjects across multiple centers and vendors. Rigid, affine, and deformable registration methods were compared for optimal coregistration. Performance was assessed using the Dice similarity coefficient for organ alignment and absolute percentage differences in organ intensity and tumor SUV<sub>mean</sub>. <strong>Results:</strong> Deformable registration consistently achieved superior alignment, with Dice similarity coefficient values exceeding 0.90 in 60% of organs while maintaining organ intensity differences below 3%; similarly, SUV<sub>mean</sub> differences for tumors were minimal at 1.6% ± 0.9%, confirming that PUMA preserves quantitative PET data while enabling robust spatial multiplexing. <strong>Conclusion:</strong> PUMA provides a vendor-independent solution for postacquisition multiplexing of serial PET/CT images, integrating complementary tracer data voxelwise into a composite image without modifying clinical protocols. This enhances multidimensional disease phenotyping and supports better diagnostic and therapeutic decisions using serial multitracer PET/CT imaging.</p>","PeriodicalId":22820,"journal":{"name":"The Journal of Nuclear Medicine","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.125.269688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combined PET/CT imaging provides critical insights into both anatomic and molecular processes, yet traditional single‐tracer approaches limit multidimensional disease phenotyping; to address this, we developed the PET Unified Multitracer Alignment (PUMA) framework—an open‐source, postprocessing tool that multiplexes serial PET/CT scans for comprehensive voxelwise tissue characterization. Methods: PUMA utilizes artificial intelligence–based CT segmentation from multiorgan objective segmentation to generate multilabel maps of 24 body regions, guiding a 2-step registration: affine alignment followed by symmetric diffeomorphic registration. Tracer images are then normalized and assigned to red–green–blue channels for simultaneous visualization of up to 3 tracers. The framework was evaluated on longitudinal PET/CT scans from 114 subjects across multiple centers and vendors. Rigid, affine, and deformable registration methods were compared for optimal coregistration. Performance was assessed using the Dice similarity coefficient for organ alignment and absolute percentage differences in organ intensity and tumor SUVmean. Results: Deformable registration consistently achieved superior alignment, with Dice similarity coefficient values exceeding 0.90 in 60% of organs while maintaining organ intensity differences below 3%; similarly, SUVmean differences for tumors were minimal at 1.6% ± 0.9%, confirming that PUMA preserves quantitative PET data while enabling robust spatial multiplexing. Conclusion: PUMA provides a vendor-independent solution for postacquisition multiplexing of serial PET/CT images, integrating complementary tracer data voxelwise into a composite image without modifying clinical protocols. This enhances multidimensional disease phenotyping and supports better diagnostic and therapeutic decisions using serial multitracer PET/CT imaging.

全自动图像为基础的多路复用序列PET/CT成像促进全面的疾病表型
PET/CT联合成像提供了解剖和分子过程的关键见解,但传统的单一示踪剂方法限制了多维疾病表型;为了解决这个问题,我们开发了PET统一多示踪比对(PUMA)框架,这是一种开源的后处理工具,可复用串行PET/CT扫描,以实现全面的体向组织表征。方法:PUMA利用基于人工智能的CT多器官目标分割,生成24个身体区域的多标签图,指导两步配准:仿射对准,然后对称差分配准。然后将示踪剂图像归一化并分配到红绿蓝通道,以同时可视化多达3种示踪剂。该框架通过来自多个中心和供应商的114名受试者的纵向PET/CT扫描进行评估。比较了刚性、仿射和可变形配准方法的最优共配准。使用器官排列的Dice相似系数和器官强度和肿瘤SUVmean的绝对百分比差异来评估性能。结果:形变配准一致取得了优异的对准效果,60%的器官Dice相似系数值超过0.90,而器官强度差异保持在3%以下;同样,肿瘤的SUVmean差异最小,为1.6%±0.9%,证实PUMA保留了定量PET数据,同时实现了强大的空间复用。结论:PUMA为串行PET/CT图像的采集后复用提供了一种独立于供应商的解决方案,在不修改临床方案的情况下,将互补的示踪数据体素地整合到复合图像中。这增强了多维疾病表型,并支持使用连续多示踪PET/CT成像更好的诊断和治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信