Zhen Liu, Fei Shao, Qiang Zhang, Min Zhao, Shuai Gao, Xusheng Zhang, Dou Yu, Jingyao Zhang, Pengyan Xia, Shuo Wang
{"title":"Epigenetic imprinting in innate lymphoid cell precursors directs the lineage segregation of innate lymphoid cells","authors":"Zhen Liu, Fei Shao, Qiang Zhang, Min Zhao, Shuai Gao, Xusheng Zhang, Dou Yu, Jingyao Zhang, Pengyan Xia, Shuo Wang","doi":"10.1038/s41590-025-02261-0","DOIUrl":null,"url":null,"abstract":"Innate lymphoid cells (ILCs) are essential for mucosal homeostasis, but the epigenetic regulation of their lineage segregation remains elusive. Here we simultaneously profiled the single-cell DNA methylome, chromatin accessibility and transcriptome of ILC subsets and ILC precursors (ILCPs) and found that ILCPs could be divided into two subgroups (ILCP1 and ILCP2). ILCP2s had highly heterogeneous DNA methylation profiles and could be divided into three groups according to their DNA methylation characteristics, which matched those of ILC subsets. We identified the signature methylation regions (SMRs) of each ILC subset and traced the DNA methylation imprinting during ILCP differentiation. ILCP2s with hypomethylated SMRs characteristic of ILC subsets differentiated into those subsets. DNA methylation editing of SMRs suppressed ILC lineage segregation, while deletion of Dnmt1 in ILCPs abrogated the heterogeneous distribution of SMRs and resulted in ILC differentiation defects. These findings provide evidence that epigenetic imprinting determines lineage segregation during immune cell development. Wang and colleagues show that specific DNA methylation profiles mark the ILC progenitors (ILCP) that would differentiate into ILC1, ILC2 or ILC3 subsets.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"26 10","pages":"1686-1698"},"PeriodicalIF":27.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41590-025-02261-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Innate lymphoid cells (ILCs) are essential for mucosal homeostasis, but the epigenetic regulation of their lineage segregation remains elusive. Here we simultaneously profiled the single-cell DNA methylome, chromatin accessibility and transcriptome of ILC subsets and ILC precursors (ILCPs) and found that ILCPs could be divided into two subgroups (ILCP1 and ILCP2). ILCP2s had highly heterogeneous DNA methylation profiles and could be divided into three groups according to their DNA methylation characteristics, which matched those of ILC subsets. We identified the signature methylation regions (SMRs) of each ILC subset and traced the DNA methylation imprinting during ILCP differentiation. ILCP2s with hypomethylated SMRs characteristic of ILC subsets differentiated into those subsets. DNA methylation editing of SMRs suppressed ILC lineage segregation, while deletion of Dnmt1 in ILCPs abrogated the heterogeneous distribution of SMRs and resulted in ILC differentiation defects. These findings provide evidence that epigenetic imprinting determines lineage segregation during immune cell development. Wang and colleagues show that specific DNA methylation profiles mark the ILC progenitors (ILCP) that would differentiate into ILC1, ILC2 or ILC3 subsets.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.