{"title":"Systematic functional screening of switchable aptamer beacon probes.","authors":"Xuan Cheng,Panzhu Yao,Chongyu Jin,Jinchen Long,Xueling Yan,Xuyang Zhao,Tongxuan Wei,Qinguo Liu,Yifan Chen,Huang Su,Hong Xuan,Siqi Bian,Jun Li,Wenlang Liu,Zheng Zheng,Liqin Zhang","doi":"10.1038/s41551-025-01503-8","DOIUrl":null,"url":null,"abstract":"Immunoassays using affinity binders such as antibodies and aptamers are crucial for molecular biology. However, the advancement of analytical methods based on these affinity probes is often hampered by complex operational steps that can introduce errors, particularly in intricate environments such as intracellular settings and microfluidic systems. There is growing interest in developing molecular probes for wash-free assays that activate signals upon target detection. Here we report a systematic functional screening platform for switchable aptamer beacon probes that can achieve target-responsive detection. A stem-loop, hairpin-shaped beacon library was constructed on microbeads and screened using target-responsive fluorescence-activated sorting. The selected aptamer beacons exhibit strong affinities, triggering fluorescence only upon binding, thus enabling wash-free immunoassays for the detection of intracellular and membrane proteins. Computational modelling offers insights into aptamer binding and structural switching mechanisms, revealing how specific protein-aptamer interactions drive stem-loop unwinding and postbinding conformational changes critical for functional activation. This approach establishes a standardized platform for generating switchable aptameric tools, supporting their potential in advanced diagnostics and research.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"17 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01503-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoassays using affinity binders such as antibodies and aptamers are crucial for molecular biology. However, the advancement of analytical methods based on these affinity probes is often hampered by complex operational steps that can introduce errors, particularly in intricate environments such as intracellular settings and microfluidic systems. There is growing interest in developing molecular probes for wash-free assays that activate signals upon target detection. Here we report a systematic functional screening platform for switchable aptamer beacon probes that can achieve target-responsive detection. A stem-loop, hairpin-shaped beacon library was constructed on microbeads and screened using target-responsive fluorescence-activated sorting. The selected aptamer beacons exhibit strong affinities, triggering fluorescence only upon binding, thus enabling wash-free immunoassays for the detection of intracellular and membrane proteins. Computational modelling offers insights into aptamer binding and structural switching mechanisms, revealing how specific protein-aptamer interactions drive stem-loop unwinding and postbinding conformational changes critical for functional activation. This approach establishes a standardized platform for generating switchable aptameric tools, supporting their potential in advanced diagnostics and research.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.