{"title":"5-ALA photodynamic metabolite-powered zero-waste ferroptosis amplifier for enhanced hypertrophic scar therapy.","authors":"Yuan Chen,Shan Wang,Congxiu Mao,Qinyi Lu,Xingyu Zhu,Dongqi Fan,Yiping Liu,Xu Chen,Jinglei Zhan,Zixin Yang,Ping Ji,Qingqing He,Tao Chen","doi":"10.1038/s41467-025-63438-7","DOIUrl":null,"url":null,"abstract":"Hypertrophic scars are a stubborn form of dermal fibrosis that impairs quality of life. Although 5-ALA-mediated photodynamic therapy holds promise, its efficacy is undermined by poor transdermal delivery and rapid metabolism into non-photosensitive heme. Here, we introduce a \"zero-waste\" strategy that repurposes 5-ALA-derived heme to synergistically amplify ferroptosis. This is achieved by co-encapsulating 5-ALA and baicalin within human H-ferritin, subsequently incorporated into polyvinylpyrrolidone microneedles. The resulting system enables targeted delivery to hypertrophic scar fibroblasts with pH-responsive, programmable drug release. Upon administration, 5-ALA generates protoporphyrin IX to initiate photodynamic therapy. Baicalin is then released to induce ferroptosis and synergize with the reactive oxygen species and heme accumulated during photodynamic therapy, thereby overstimulating the HO-1-heme metabolic axis. This cascade promotes the release of Fe²⁺ and CO, further amplifying ferroptotic responses. Moreover, the ferroptotic stress triggers mitophagy and mitochondrial Fe²⁺ efflux. By harnessing 5-ALA metabolic byproducts, this strategy achieved markedly prolonged anti-scar efficacy in the female rabbit ear HS tissues, surpassing that of conventional therapies.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":"8321"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63438-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertrophic scars are a stubborn form of dermal fibrosis that impairs quality of life. Although 5-ALA-mediated photodynamic therapy holds promise, its efficacy is undermined by poor transdermal delivery and rapid metabolism into non-photosensitive heme. Here, we introduce a "zero-waste" strategy that repurposes 5-ALA-derived heme to synergistically amplify ferroptosis. This is achieved by co-encapsulating 5-ALA and baicalin within human H-ferritin, subsequently incorporated into polyvinylpyrrolidone microneedles. The resulting system enables targeted delivery to hypertrophic scar fibroblasts with pH-responsive, programmable drug release. Upon administration, 5-ALA generates protoporphyrin IX to initiate photodynamic therapy. Baicalin is then released to induce ferroptosis and synergize with the reactive oxygen species and heme accumulated during photodynamic therapy, thereby overstimulating the HO-1-heme metabolic axis. This cascade promotes the release of Fe²⁺ and CO, further amplifying ferroptotic responses. Moreover, the ferroptotic stress triggers mitophagy and mitochondrial Fe²⁺ efflux. By harnessing 5-ALA metabolic byproducts, this strategy achieved markedly prolonged anti-scar efficacy in the female rabbit ear HS tissues, surpassing that of conventional therapies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.