Sunil Jog, Sayali Dighe, Khushali Nathani, Akanksha Waghmare, Shubhada V Mangrulkar, Sujata P Sawarkar, Abdelwahab Omri
{"title":"Lipid carrier-based intranasal delivery of calcium channel blockers for Alzheimer's disease.","authors":"Sunil Jog, Sayali Dighe, Khushali Nathani, Akanksha Waghmare, Shubhada V Mangrulkar, Sujata P Sawarkar, Abdelwahab Omri","doi":"10.1080/17425247.2025.2564130","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Felodipine (FLD) is an L-type calcium channel blocker with pronounced neuroprotection against Alzheimer's disease (AD). Unfortunately, the efficacy of FLD has been impeded by limited solubility, poor bioavailability, and sub-optimal accumulation. Thus, the current study unfolds the potential of nanostructured lipid carriers based on in-situ gel of FLD (FLD-NLCs gel) to ameliorate dementia.</p><p><strong>Methods: </strong>The FLD-contained NLCs were prepared using the microemulsion-sonication method and further integrated into thermosensitive gel comprised poloxamer 407 and HPMC K4M. The formulation was evaluated by ex-vivo permeation study, cell culture studies, and in-vivo efficacy study. The toxicity of formulation was assessed by HET-CAM assay, and nasal cilitoxicity study.</p><p><strong>Results: </strong>The optimized FLD-NLCs had nanoscaled dimension, spherical shape, and augmented %EE (~96%). The FLD-NLCs gel displayed biphasic release, with ~1.3-fold higher permeation as relative to free FLD. The HET-CAM assay and cell culture study revealed compatible nature of formulation. The in-vivo biochemical, neurotransmitter, and inflammatory marker determination revealed neuroprotective and restorative potential of the FLD-NLCs gel.</p><p><strong>Conclusions: </strong>The repurposing tactic of FLD presents a viable concept to combat AD. Also, the NLC-based temperature responsive intranasal gel exemplifies a practical approach to augment the efficacy of FLD.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-15"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2564130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Felodipine (FLD) is an L-type calcium channel blocker with pronounced neuroprotection against Alzheimer's disease (AD). Unfortunately, the efficacy of FLD has been impeded by limited solubility, poor bioavailability, and sub-optimal accumulation. Thus, the current study unfolds the potential of nanostructured lipid carriers based on in-situ gel of FLD (FLD-NLCs gel) to ameliorate dementia.
Methods: The FLD-contained NLCs were prepared using the microemulsion-sonication method and further integrated into thermosensitive gel comprised poloxamer 407 and HPMC K4M. The formulation was evaluated by ex-vivo permeation study, cell culture studies, and in-vivo efficacy study. The toxicity of formulation was assessed by HET-CAM assay, and nasal cilitoxicity study.
Results: The optimized FLD-NLCs had nanoscaled dimension, spherical shape, and augmented %EE (~96%). The FLD-NLCs gel displayed biphasic release, with ~1.3-fold higher permeation as relative to free FLD. The HET-CAM assay and cell culture study revealed compatible nature of formulation. The in-vivo biochemical, neurotransmitter, and inflammatory marker determination revealed neuroprotective and restorative potential of the FLD-NLCs gel.
Conclusions: The repurposing tactic of FLD presents a viable concept to combat AD. Also, the NLC-based temperature responsive intranasal gel exemplifies a practical approach to augment the efficacy of FLD.