CAR T-cell and oncolytic virus dynamics and determinants of combination therapy success for glioblastoma

IF 1.8 4区 数学 Q2 BIOLOGY
Martina Conte , Agata Xella , Ryan T. Woodall , Kevin A. Cassady , Sergio Branciamore , Christine E. Brown , Russell C. Rockne
{"title":"CAR T-cell and oncolytic virus dynamics and determinants of combination therapy success for glioblastoma","authors":"Martina Conte ,&nbsp;Agata Xella ,&nbsp;Ryan T. Woodall ,&nbsp;Kevin A. Cassady ,&nbsp;Sergio Branciamore ,&nbsp;Christine E. Brown ,&nbsp;Russell C. Rockne","doi":"10.1016/j.mbs.2025.109531","DOIUrl":null,"url":null,"abstract":"<div><div>Glioblastoma is a highly aggressive and treatment-resistant primary brain cancer. While chimeric antigen receptor (CAR) T-cell therapy has demonstrated promising results in targeting these tumors, it has not yet been curative. An innovative approach to improve CAR T-cell efficacy is to combine them with other immune modulating therapies. In this study, we investigate <em>in vitro</em> combination of IL-13R<span><math><mi>α</mi></math></span>2 targeted CAR T-cells with an oncolytic virus (OV) and study the complex interplay between tumor cells, CAR T-cells, and OV dynamics with a novel mathematical model. We fit the model to data collected from experiments with each therapy individually and in combination to reveal determinants of therapy synergy and improved efficacy. Our analysis reveals that the virus bursting size is a critical parameter in determining the net tumor infection rate and overall combination treatment efficacy. Moreover, the model predicts that administering the oncolytic virus simultaneously with, or prior to, CAR T-cells could maximize therapeutic efficacy.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"389 ","pages":"Article 109531"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001579","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma is a highly aggressive and treatment-resistant primary brain cancer. While chimeric antigen receptor (CAR) T-cell therapy has demonstrated promising results in targeting these tumors, it has not yet been curative. An innovative approach to improve CAR T-cell efficacy is to combine them with other immune modulating therapies. In this study, we investigate in vitro combination of IL-13Rα2 targeted CAR T-cells with an oncolytic virus (OV) and study the complex interplay between tumor cells, CAR T-cells, and OV dynamics with a novel mathematical model. We fit the model to data collected from experiments with each therapy individually and in combination to reveal determinants of therapy synergy and improved efficacy. Our analysis reveals that the virus bursting size is a critical parameter in determining the net tumor infection rate and overall combination treatment efficacy. Moreover, the model predicts that administering the oncolytic virus simultaneously with, or prior to, CAR T-cells could maximize therapeutic efficacy.
CAR - t细胞和溶瘤病毒动力学和胶质母细胞瘤联合治疗成功的决定因素。
胶质母细胞瘤是一种高度侵袭性和治疗抵抗性的原发性脑癌。虽然嵌合抗原受体(CAR) t细胞疗法在靶向这些肿瘤方面已经显示出有希望的结果,但它尚未治愈。提高CAR - t细胞疗效的一种创新方法是将它们与其他免疫调节疗法相结合。在这项研究中,我们研究了IL-13Rα2靶向CAR - t细胞与溶瘤病毒(OV)的体外联合,并通过一个新的数学模型研究了肿瘤细胞、CAR - t细胞和OV动力学之间的复杂相互作用。我们将模型拟合到从每种治疗单独和组合的实验中收集的数据中,以揭示治疗协同作用和改善疗效的决定因素。我们的分析表明,病毒破裂大小是决定净肿瘤感染率和综合治疗效果的关键参数。此外,该模型预测,溶瘤病毒与CAR - t细胞同时或先于CAR - t细胞使用可以最大限度地提高治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信