[Application of Machine Learning Techniques for Antimicrobial Resistance Prediction].

Q2 Environmental Science
Chao Huang, Lu-Kai Qiao, Yi-Chun Wang, Yi-Hao Yu, Hong Bai, Fang-Zhou Gao, Jian-Liang Zhao, You-Sheng Liu, Liang-Ying He, Guang-Guo Ying
{"title":"[Application of Machine Learning Techniques for Antimicrobial Resistance Prediction].","authors":"Chao Huang, Lu-Kai Qiao, Yi-Chun Wang, Yi-Hao Yu, Hong Bai, Fang-Zhou Gao, Jian-Liang Zhao, You-Sheng Liu, Liang-Ying He, Guang-Guo Ying","doi":"10.13227/j.hjkx.202408015","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the abuse or excessive use of antimicrobials, particularly antibiotics, antimicrobial resistance (AMR) has become one of the major challenges in global public health. The rapid growth of microbial data, facilitated by advancements in high-throughput sequencing technology, underscores the importance of leveraging machine learning for predicting AMR and identifying resistance markers. Machine learning, encompassing supervised and unsupervised learning, has been proven effective by early studies of AMR prediction. By analyzing microbial genomes and AMR data to build machine learning models, we can improve predictions of microbial resistance and develop more effective antibiotic use strategies, thereby controlling the spread of resistance. This review article focuses on the specific construction processes of machine learning algorithms and the models commonly employed in AMR studies. It also highlights the diverse applications and prospects of machine learning in AMR prediction, with the goal of offering a scientific foundation for future environmental AMR monitoring initiatives.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 9","pages":"5659-5671"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202408015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the abuse or excessive use of antimicrobials, particularly antibiotics, antimicrobial resistance (AMR) has become one of the major challenges in global public health. The rapid growth of microbial data, facilitated by advancements in high-throughput sequencing technology, underscores the importance of leveraging machine learning for predicting AMR and identifying resistance markers. Machine learning, encompassing supervised and unsupervised learning, has been proven effective by early studies of AMR prediction. By analyzing microbial genomes and AMR data to build machine learning models, we can improve predictions of microbial resistance and develop more effective antibiotic use strategies, thereby controlling the spread of resistance. This review article focuses on the specific construction processes of machine learning algorithms and the models commonly employed in AMR studies. It also highlights the diverse applications and prospects of machine learning in AMR prediction, with the goal of offering a scientific foundation for future environmental AMR monitoring initiatives.

[机器学习技术在抗菌素耐药性预测中的应用]
由于滥用或过度使用抗菌素,特别是抗生素,抗菌素耐药性(AMR)已成为全球公共卫生的主要挑战之一。高通量测序技术的进步促进了微生物数据的快速增长,强调了利用机器学习预测抗菌素耐药性和识别耐药性标记的重要性。机器学习,包括监督学习和无监督学习,已经被AMR预测的早期研究证明是有效的。通过分析微生物基因组和AMR数据来构建机器学习模型,我们可以改进微生物耐药性的预测,制定更有效的抗生素使用策略,从而控制耐药性的传播。本文综述了机器学习算法的具体构建过程和AMR研究中常用的模型。它还强调了机器学习在抗菌素耐药性预测中的各种应用和前景,旨在为未来的环境抗菌素耐药性监测举措提供科学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信