Dilkaran Singh, Qijun Zhang, Ghana Challa, Elias M Elias, Steven S Xu, Wanlong Li
{"title":"Genomics-enabled dissection of sea wheatgrass genome for advancing wheat genetic resources.","authors":"Dilkaran Singh, Qijun Zhang, Ghana Challa, Elias M Elias, Steven S Xu, Wanlong Li","doi":"10.1007/s00122-025-05021-8","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat production is challenged by biotic and abiotic stresses. Alien gene transfer is an effective approach to tackle such challenges. We previously showed that sea wheatgrass (SWG; Thinopyrum junceiforme (2n = 2x = 28; J<sub>1</sub>J<sub>2</sub>) is an untapped resource possessing resistance to an array of pests and abiotic stress. However, the transfer of these important traits has been hindered by the lack of genomic resources and a clear picture of its genome constitution. Using multi-color genomic in situ hybridization, we distinguished the SWG sub-genomes and corroborated that the J<sub>1</sub> sub-genome is closely related to the E genome of Th. elongatum and the J genome of Th. bessarabicum and the J<sub>2</sub> sub-genome to the V genome of Dasypyrum villosum. Meanwhile, we developed a draft SWG genome assembly and 127 SWG-specific DNA markers covering the 14 SWG chromosomes. Screening a population of 466 BC<sub>2</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>2</sub> individuals, derived from backcrosses of wheat-SWG amphiploid to wheat, by the SWG-specific markers led to selection of 72 plants putatively carrying one or two SWG chromosomes. The genome painting analysis of the 72 plants eventually identified a set of 37 wheat-SWG chromosome addition lines covering all the 14 pairs of SWG chromosomes and two compensating Robertsonian translocations (RobTs). While the wheat-SWG chromosome addition lines and RobTs are invaluable genetic resources for wheat improvement via chromosome engineering, our results showed the power of genome-specific markers in combination with genome painting in dissection of a polyploid genome and implicated the origin of a group of important polyploid grasses.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 10","pages":"252"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-05021-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Wheat production is challenged by biotic and abiotic stresses. Alien gene transfer is an effective approach to tackle such challenges. We previously showed that sea wheatgrass (SWG; Thinopyrum junceiforme (2n = 2x = 28; J1J2) is an untapped resource possessing resistance to an array of pests and abiotic stress. However, the transfer of these important traits has been hindered by the lack of genomic resources and a clear picture of its genome constitution. Using multi-color genomic in situ hybridization, we distinguished the SWG sub-genomes and corroborated that the J1 sub-genome is closely related to the E genome of Th. elongatum and the J genome of Th. bessarabicum and the J2 sub-genome to the V genome of Dasypyrum villosum. Meanwhile, we developed a draft SWG genome assembly and 127 SWG-specific DNA markers covering the 14 SWG chromosomes. Screening a population of 466 BC2F1 and BC2F2 individuals, derived from backcrosses of wheat-SWG amphiploid to wheat, by the SWG-specific markers led to selection of 72 plants putatively carrying one or two SWG chromosomes. The genome painting analysis of the 72 plants eventually identified a set of 37 wheat-SWG chromosome addition lines covering all the 14 pairs of SWG chromosomes and two compensating Robertsonian translocations (RobTs). While the wheat-SWG chromosome addition lines and RobTs are invaluable genetic resources for wheat improvement via chromosome engineering, our results showed the power of genome-specific markers in combination with genome painting in dissection of a polyploid genome and implicated the origin of a group of important polyploid grasses.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.