Jiancheng Zhang, Xiangting Li, Xiaolu Guo, Zhaoyi You, Lucas Böttcher, Alex Mogilner, Alexander Hoffmann, Tom Chou, Mingtao Xia
{"title":"Reconstructing noisy gene regulation dynamics using extrinsic-noise-driven neural stochastic differential equations.","authors":"Jiancheng Zhang, Xiangting Li, Xiaolu Guo, Zhaoyi You, Lucas Böttcher, Alex Mogilner, Alexander Hoffmann, Tom Chou, Mingtao Xia","doi":"10.1371/journal.pcbi.1013462","DOIUrl":null,"url":null,"abstract":"<p><p>Proper regulation of cell signaling and gene expression is crucial for maintaining cellular function, development, and adaptation to environmental changes. Reaction dynamics in cell populations is often noisy because of (i) inherent stochasticity of intracellular biochemical reactions (\"intrinsic noise\") and (ii) heterogeneity of cellular states across different cells that are influenced by external factors (\"extrinsic noise\"). In this work, we introduce an extrinsic-noise-driven neural stochastic differential equation (END-nSDE) framework that utilizes the Wasserstein distance to accurately reconstruct SDEs from stochastic trajectories measured across a heterogeneous population of cells (extrinsic noise). We demonstrate the effectiveness of our approach using both simulated and experimental data from three different systems in cell biology: (i) circadian rhythms, (ii) RPA-DNA binding dynamics, and (iii) NF[Formula: see text]B signaling processes. Our END-nSDE reconstruction method can model how cellular heterogeneity (extrinsic noise) modulates reaction dynamics in the presence of intrinsic noise. It also outperforms existing time-series analysis methods such as recurrent neural networks (RNNs) and long short-term memory networks (LSTMs). By inferring cellular heterogeneities from data, our END-nSDE reconstruction method can reproduce noisy dynamics observed in experiments. In summary, the reconstruction method we propose offers a useful surrogate modeling approach for complex biophysical processes, where high-fidelity mechanistic models may be impractical.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013462"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013462","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Proper regulation of cell signaling and gene expression is crucial for maintaining cellular function, development, and adaptation to environmental changes. Reaction dynamics in cell populations is often noisy because of (i) inherent stochasticity of intracellular biochemical reactions ("intrinsic noise") and (ii) heterogeneity of cellular states across different cells that are influenced by external factors ("extrinsic noise"). In this work, we introduce an extrinsic-noise-driven neural stochastic differential equation (END-nSDE) framework that utilizes the Wasserstein distance to accurately reconstruct SDEs from stochastic trajectories measured across a heterogeneous population of cells (extrinsic noise). We demonstrate the effectiveness of our approach using both simulated and experimental data from three different systems in cell biology: (i) circadian rhythms, (ii) RPA-DNA binding dynamics, and (iii) NF[Formula: see text]B signaling processes. Our END-nSDE reconstruction method can model how cellular heterogeneity (extrinsic noise) modulates reaction dynamics in the presence of intrinsic noise. It also outperforms existing time-series analysis methods such as recurrent neural networks (RNNs) and long short-term memory networks (LSTMs). By inferring cellular heterogeneities from data, our END-nSDE reconstruction method can reproduce noisy dynamics observed in experiments. In summary, the reconstruction method we propose offers a useful surrogate modeling approach for complex biophysical processes, where high-fidelity mechanistic models may be impractical.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.