{"title":"The how and why of sleep: Motor theory and catecholamine hypothesis.","authors":"Chenyan Ma, Yang Dan","doi":"10.1016/j.neuron.2025.08.017","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep entails profound changes in the brain and body, marked by altered states of consciousness and reduced somatic and autonomic motor activity. Regarding \"how\" sleep is regulated, whole-brain screening revealed large sleep-control networks spanning the forebrain, midbrain, and hindbrain. We unify diverse experimental evidence under a \"motor theory,\" in which the sleep-control mechanism is integral to somatic and autonomic motor circuits. Regarding the \"why\" question, sleep deprivation impairs cognition, emotion, metabolism, and immunity. We propose catecholamine (dopamine, noradrenaline, and adrenaline) inactivation as the fundamental biological process underlying sleep's numerous benefits. Beyond brain arousal and motor activity, catecholamines regulate metabolism and immunity; their sleep-dependent suppression yields wide-ranging advantages, promoting repair and rejuvenation. Furthermore, catecholaminergic neurons are metabolically vulnerable; their need for rest and recovery may drive homeostatic sleep pressure. Together, the motor theory offers a unifying framework for sleep control, while the catecholamine hypothesis posits a core mechanism mediating sleep's multifaceted benefits.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.08.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep entails profound changes in the brain and body, marked by altered states of consciousness and reduced somatic and autonomic motor activity. Regarding "how" sleep is regulated, whole-brain screening revealed large sleep-control networks spanning the forebrain, midbrain, and hindbrain. We unify diverse experimental evidence under a "motor theory," in which the sleep-control mechanism is integral to somatic and autonomic motor circuits. Regarding the "why" question, sleep deprivation impairs cognition, emotion, metabolism, and immunity. We propose catecholamine (dopamine, noradrenaline, and adrenaline) inactivation as the fundamental biological process underlying sleep's numerous benefits. Beyond brain arousal and motor activity, catecholamines regulate metabolism and immunity; their sleep-dependent suppression yields wide-ranging advantages, promoting repair and rejuvenation. Furthermore, catecholaminergic neurons are metabolically vulnerable; their need for rest and recovery may drive homeostatic sleep pressure. Together, the motor theory offers a unifying framework for sleep control, while the catecholamine hypothesis posits a core mechanism mediating sleep's multifaceted benefits.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.