Molecular crystal memristors.

IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lanhao Qin, Pengfei Guan, Jiefan Shao, Yu Xiao, Yimeng Yu, Jie Su, Conghui Zhang, Yanyong Li, Shenghong Liu, Pengyu Li, Decai Ouyang, Wenke He, Fenghao Liu, Kaichen Zhu, Kailang Liu, Zhenpeng Yao, Jinsong Wu, Yinghe Zhao, Huiqiao Li, Fei Hui, Peng Lin, Mario Lanza, Yuan Li, Tianyou Zhai
{"title":"Molecular crystal memristors.","authors":"Lanhao Qin, Pengfei Guan, Jiefan Shao, Yu Xiao, Yimeng Yu, Jie Su, Conghui Zhang, Yanyong Li, Shenghong Liu, Pengyu Li, Decai Ouyang, Wenke He, Fenghao Liu, Kaichen Zhu, Kailang Liu, Zhenpeng Yao, Jinsong Wu, Yinghe Zhao, Huiqiao Li, Fei Hui, Peng Lin, Mario Lanza, Yuan Li, Tianyou Zhai","doi":"10.1038/s41565-025-02013-z","DOIUrl":null,"url":null,"abstract":"<p><p>Memristors have emerged as a promising hardware platform for in-memory computing, but many current devices suffer from channel material degradation during repeated resistive switching. This leads to high energy consumption and limited endurance. Here we introduce a molecular crystal memristor, of which the representative channel material, Sb<sub>2</sub>O<sub>3</sub>, possesses a molecular crystal structure where molecular cages are interconnected via van der Waals forces. This unique configuration allows ions to migrate through intermolecular spaces with relatively low energy input, preserving the integrity of the crystal structure even after extensive switching cycles. Our molecular crystal memristor thus exhibits low energy consumption of 26 zJ per operation, with prominent endurance surpassing 10<sup>9</sup> switching cycles. The device delivers both reconfigurable non-volatile and volatile resistive switching behaviours over a broad range of device scales, from micrometres down to nanometres. Furthermore, we establish the scalability of this technology by fabricating large crossbar arrays on an 8 inch wafer. This enables the successful implementation of reservoir computing on a single CMOS-integrated chip using these memristors, achieving 100% accuracy in dynamic vision recognition.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":" ","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-02013-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Memristors have emerged as a promising hardware platform for in-memory computing, but many current devices suffer from channel material degradation during repeated resistive switching. This leads to high energy consumption and limited endurance. Here we introduce a molecular crystal memristor, of which the representative channel material, Sb2O3, possesses a molecular crystal structure where molecular cages are interconnected via van der Waals forces. This unique configuration allows ions to migrate through intermolecular spaces with relatively low energy input, preserving the integrity of the crystal structure even after extensive switching cycles. Our molecular crystal memristor thus exhibits low energy consumption of 26 zJ per operation, with prominent endurance surpassing 109 switching cycles. The device delivers both reconfigurable non-volatile and volatile resistive switching behaviours over a broad range of device scales, from micrometres down to nanometres. Furthermore, we establish the scalability of this technology by fabricating large crossbar arrays on an 8 inch wafer. This enables the successful implementation of reservoir computing on a single CMOS-integrated chip using these memristors, achieving 100% accuracy in dynamic vision recognition.

分子晶体忆阻器。
忆阻器已经成为一种很有前途的内存计算硬件平台,但许多当前的器件在重复电阻开关过程中存在通道材料退化的问题。这导致高能量消耗和有限的耐力。本文介绍了一种分子晶体忆阻器,其代表性通道材料Sb2O3具有分子晶体结构,其中分子笼通过范德华力相互连接。这种独特的结构允许离子以相对较低的能量输入通过分子间空间迁移,即使在长时间的开关循环后也能保持晶体结构的完整性。因此,我们的分子晶体忆阻器显示出每次操作26 zJ的低能耗,具有超过109个开关周期的突出耐用性。该器件在从微米到纳米的广泛器件尺度范围内提供可重构的非易失性和易失性电阻开关行为。此外,我们通过在8英寸晶圆上制造大型交叉杆阵列来建立该技术的可扩展性。这使得使用这些忆阻器在单个cmos集成芯片上成功实现了储层计算,实现了100%的动态视觉识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信