Toward mmWave Surface Acoustic Wave Resonators in Lithium Niobate on Silicon Carbide.

IF 3.7 2区 工程技术 Q1 ACOUSTICS
Tzu-Hsuan Hsu, Lezli Matto, Joshua Campbell, Jack Kramer, Zhi-Qiang Lee, Ian Anderson, Kaicheung Chow, Mark S Goorsky, Ming-Huang Li, Ruochen Lu
{"title":"Toward mmWave Surface Acoustic Wave Resonators in Lithium Niobate on Silicon Carbide.","authors":"Tzu-Hsuan Hsu, Lezli Matto, Joshua Campbell, Jack Kramer, Zhi-Qiang Lee, Ian Anderson, Kaicheung Chow, Mark S Goorsky, Ming-Huang Li, Ruochen Lu","doi":"10.1109/TUFFC.2025.3611298","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in next-generation wireless systems have expanded the need for radio frequency front-ends (RFFEs) towards the millimeter wave (mmWave) range. This work introduces two methods targeting the efficient design of solidly-mounted surface acoustic wave (SAW) resonator architectures based on lithium niobate on silicon carbide (LN-on-SiC) hetero-acoustic waveguides for mmWave applications. The first method utilizes a longitudinal SAW (L-SAW) mode in X-cut LN to achieve a high phase velocity of 6500 m/s and a figure of merit (FoM) of 6.53 at 22.42 GHz, enabled by strong acoustic confinement and careful wavelength scaling. The second method presents a novel electrode-guided shear horizontal SAW (EG SH-SAW) mode in Y-cut LN, leveraging electrode design to confine higher-order SH modes and mitigate internal stress cancellation. The fabricated EG SH-SAW resonator achieves operation at 23.5 GHz with a coupling coefficient k<sup>2</sup> of 1.6% and a FoM of 4.16. Both methods demonstrate resonators successfully scaled towards mmWave range with high Q-factors and open the potential for future solidly-mounted frequency-scalable, high-performance acoustic devices in mm wave bands.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2025.3611298","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in next-generation wireless systems have expanded the need for radio frequency front-ends (RFFEs) towards the millimeter wave (mmWave) range. This work introduces two methods targeting the efficient design of solidly-mounted surface acoustic wave (SAW) resonator architectures based on lithium niobate on silicon carbide (LN-on-SiC) hetero-acoustic waveguides for mmWave applications. The first method utilizes a longitudinal SAW (L-SAW) mode in X-cut LN to achieve a high phase velocity of 6500 m/s and a figure of merit (FoM) of 6.53 at 22.42 GHz, enabled by strong acoustic confinement and careful wavelength scaling. The second method presents a novel electrode-guided shear horizontal SAW (EG SH-SAW) mode in Y-cut LN, leveraging electrode design to confine higher-order SH modes and mitigate internal stress cancellation. The fabricated EG SH-SAW resonator achieves operation at 23.5 GHz with a coupling coefficient k2 of 1.6% and a FoM of 4.16. Both methods demonstrate resonators successfully scaled towards mmWave range with high Q-factors and open the potential for future solidly-mounted frequency-scalable, high-performance acoustic devices in mm wave bands.

碳化硅上铌酸锂毫米波表面声波谐振器的研究。
下一代无线系统的最新进展已将对射频前端(rffe)的需求扩展到毫米波(mmWave)范围。本文介绍了两种方法,旨在有效设计基于铌酸锂碳化硅(LN-on-SiC)异质声波导的固体表面声波(SAW)谐振器结构,用于毫米波应用。第一种方法利用X-cut LN中的纵向SAW (L-SAW)模式,在22.42 GHz时实现了6500 m/s的高相速度和6.53的品质系数(FoM),实现了强声约束和仔细的波长缩放。第二种方法在y切割LN中提出了一种新的电极引导剪切水平SAW (EG SH-SAW)模式,利用电极设计来限制高阶SH模式并减轻内应力抵消。制备的EG SH-SAW谐振器工作频率为23.5 GHz,耦合系数k2为1.6%,FoM为4.16。这两种方法都证明了谐振器成功地扩展到具有高q因子的毫米波范围,并为未来在毫米波波段中坚固安装的频率可扩展、高性能声学设备打开了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信