Resistance to heavy metals and chromium reduction by bacteria isolated from air.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Guardado-Fierros B G, Lorenzo-Santiago M A, Patrón-Soberano O A, Rodríguez-Campos J, Contreras-Ramos S M
{"title":"Resistance to heavy metals and chromium reduction by bacteria isolated from air.","authors":"Guardado-Fierros B G, Lorenzo-Santiago M A, Patrón-Soberano O A, Rodríguez-Campos J, Contreras-Ramos S M","doi":"10.1007/s10123-025-00716-w","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution by heavy metals is a major global concern, necessitating the exploration of sustainable bioremediation strategies. Airborne bacteria represent an underexplored resource in this context. This study investigated the potential of bacteria isolated from bioaerosols for the bioremediation of heavy metals. Nine bacterial strains belonging to the genera Exiguobacterium, Kocuria, Rhodococcus, and Staphylococcus were isolated and identified through MaLDI-TOF analysis and 16S rRNA gene sequencing. The minimum inhibitory concentrations (MIC) of chromium, copper, lead, nickel, mercury, and cadmium were determined to evaluate metal resistance. Bioreduction assays were performed to determine the capacity of selected strains to reduce hexavalent chromium [Cr(VI)] in solution. Chromate reductase activity was quantified in Rhodococcus rhodochrous As33. Morphological responses to chromium exposure were examined using scanning and transmission electron microscopy (SEM and TEM). MIC analyses revealed variable but significant resistance to multiple Heavy metals among the isolates. Bioreduction assays demonstrated that five selected strains reduced from 79.9% to 100% of Cr(VI) within 72 h. R. rhodochrous As33 achieved complete Cr(VI) reduction, as confirmed by 1,5-diphenylcarbazide complexation, and inductively coupled plasma mass spectrometry (ICP-MS). Enzymatic analysis indicated a chromate reductase activity of 67.87 U mg⁻<sup>1</sup> of total protein in this strain. SEM and TEM revealed marked cellular adaptations to chromium stress, including pleomorphism, membrane thinning, vesicle formation, and the deposition of extracellular electron-dense precipitates, suggesting active biosorption and bioprecipitation mechanisms. The results highlight the bioremediation potential of airborne bacteria, particularly R. rhodochrous As33, in heavy metal-contaminated environments. Further studies are needed to validate their performance under complex environmental conditions and to support their application in sustainable remediation strategies.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00716-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental pollution by heavy metals is a major global concern, necessitating the exploration of sustainable bioremediation strategies. Airborne bacteria represent an underexplored resource in this context. This study investigated the potential of bacteria isolated from bioaerosols for the bioremediation of heavy metals. Nine bacterial strains belonging to the genera Exiguobacterium, Kocuria, Rhodococcus, and Staphylococcus were isolated and identified through MaLDI-TOF analysis and 16S rRNA gene sequencing. The minimum inhibitory concentrations (MIC) of chromium, copper, lead, nickel, mercury, and cadmium were determined to evaluate metal resistance. Bioreduction assays were performed to determine the capacity of selected strains to reduce hexavalent chromium [Cr(VI)] in solution. Chromate reductase activity was quantified in Rhodococcus rhodochrous As33. Morphological responses to chromium exposure were examined using scanning and transmission electron microscopy (SEM and TEM). MIC analyses revealed variable but significant resistance to multiple Heavy metals among the isolates. Bioreduction assays demonstrated that five selected strains reduced from 79.9% to 100% of Cr(VI) within 72 h. R. rhodochrous As33 achieved complete Cr(VI) reduction, as confirmed by 1,5-diphenylcarbazide complexation, and inductively coupled plasma mass spectrometry (ICP-MS). Enzymatic analysis indicated a chromate reductase activity of 67.87 U mg⁻1 of total protein in this strain. SEM and TEM revealed marked cellular adaptations to chromium stress, including pleomorphism, membrane thinning, vesicle formation, and the deposition of extracellular electron-dense precipitates, suggesting active biosorption and bioprecipitation mechanisms. The results highlight the bioremediation potential of airborne bacteria, particularly R. rhodochrous As33, in heavy metal-contaminated environments. Further studies are needed to validate their performance under complex environmental conditions and to support their application in sustainable remediation strategies.

抗重金属和铬的细菌从空气中分离。
重金属环境污染是全球关注的主要问题,需要探索可持续的生物修复策略。在这种情况下,空气传播的细菌是一种未被充分开发的资源。本研究探讨了从生物气溶胶中分离的细菌对重金属进行生物修复的潜力。通过MaLDI-TOF分析和16S rRNA基因测序,分离鉴定了9株Exiguobacterium、Kocuria、Rhodococcus和Staphylococcus。测定了铬、铜、铅、镍、汞和镉的最低抑制浓度(MIC),以评估金属耐药性。采用生物还原法测定所选菌株对溶液中六价铬[Cr(VI)]的还原能力。测定了红红红球菌As33中铬酸盐还原酶的活性。利用扫描电镜(SEM)和透射电镜(TEM)研究了铬暴露后的形态反应。MIC分析显示菌株对多种重金属具有不同但显著的抗性。生物还原实验表明,5株选择的菌株在72 h内将Cr(VI)从79.9%还原到100%。R. rhodochrous As33实现了完全的Cr(VI)还原,通过1,5-二苯脲络合和电感耦合等离子体质谱(ICP-MS)证实了这一点。酶分析表明,该菌株的铬酸还原酶活性为67.87 U mg - 1。扫描电镜(SEM)和透射电镜(TEM)显示了细胞对铬胁迫的明显适应,包括多形性、膜变薄、囊泡形成和细胞外电子致密沉淀物的沉积,表明活性生物吸附和生物沉淀机制。结果表明,空气传播细菌,特别是rhodochrous As33,在重金属污染环境中具有生物修复潜力。需要进一步的研究来验证它们在复杂环境条件下的性能,并支持它们在可持续修复策略中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信