Toward unraveling molecular grammars for dsRNA-binding proteins: substrate recognition to binding mechanisms.

IF 3.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
BMB Reports Pub Date : 2025-09-16
Jaemin Jeon, Yoosik Kim
{"title":"Toward unraveling molecular grammars for dsRNA-binding proteins: substrate recognition to binding mechanisms.","authors":"Jaemin Jeon, Yoosik Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Long double-stranded RNAs (dsRNAs) are recognized by innate immune response proteins, thereby initiating the integrated stress response. As these RNAs adopt an A-form helical structure, immune sensors recognize dsRNAs primarily based on their structural features, such as the length of the doublestranded stretch and the triphosphate at the 5' end, rather than on specific sequences. This structure-dependent, sequenceindependent mode of RNA recognition is also characteristic of many dsRNA-binding proteins (dsRBPs). Consequently, multiple dsRBPs share a common pool of dsRNA substrates, leading to a complex regulatory network in which proteins modulate each other's activation status and signaling activities. With the development of advanced analytical techniques capable of studying RNA sequences and structures at single-nucleotide resolution, research into dsRNA-protein interactions has advanced significantly. This review discusses the long dsRNAinteracting dsRBPs encoded in the human genome, their RNA substrates, recognition mechanisms, and the downstream effects of protein-RNA interactions, with the aim of deepening our understanding of dsRNA recognition and signaling.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long double-stranded RNAs (dsRNAs) are recognized by innate immune response proteins, thereby initiating the integrated stress response. As these RNAs adopt an A-form helical structure, immune sensors recognize dsRNAs primarily based on their structural features, such as the length of the doublestranded stretch and the triphosphate at the 5' end, rather than on specific sequences. This structure-dependent, sequenceindependent mode of RNA recognition is also characteristic of many dsRNA-binding proteins (dsRBPs). Consequently, multiple dsRBPs share a common pool of dsRNA substrates, leading to a complex regulatory network in which proteins modulate each other's activation status and signaling activities. With the development of advanced analytical techniques capable of studying RNA sequences and structures at single-nucleotide resolution, research into dsRNA-protein interactions has advanced significantly. This review discusses the long dsRNAinteracting dsRBPs encoded in the human genome, their RNA substrates, recognition mechanisms, and the downstream effects of protein-RNA interactions, with the aim of deepening our understanding of dsRNA recognition and signaling.

解开dsrna结合蛋白的分子语法:底物识别到结合机制。
长双链rna (dsRNAs)被先天免疫反应蛋白识别,从而启动综合应激反应。由于这些rna采用a型螺旋结构,免疫传感器识别dsrna主要基于它们的结构特征,如双链拉伸的长度和5'端的三磷酸,而不是特定的序列。这种结构依赖、序列独立的RNA识别模式也是许多dsrna结合蛋白(dsrbp)的特征。因此,多个dsrbp共享一个共同的dsRNA底物池,导致一个复杂的调节网络,其中蛋白质调节彼此的激活状态和信号活动。随着能够在单核苷酸分辨率上研究RNA序列和结构的先进分析技术的发展,对dsrna -蛋白质相互作用的研究取得了显著进展。本文综述了人类基因组中编码的与dsRNA相互作用的长链dsrbp,它们的RNA底物,识别机制以及蛋白-RNA相互作用的下游效应,旨在加深我们对dsRNA识别和信号传导的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMB Reports
BMB Reports 生物-生化与分子生物学
CiteScore
5.10
自引率
7.90%
发文量
141
审稿时长
1 months
期刊介绍: The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信