{"title":"Imitation-relaxation reinforcement learning for sparse badminton strikes via dynamic trajectory generation.","authors":"Yanyan Yuan, Yucheng Tao, Shaowen Cheng, Yanhong Liang, Yongbin Jin, Hongtao Wang","doi":"10.3389/fnbot.2025.1649870","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic racket sports provide exceptional benchmarks for evaluating dynamic motion control capabilities in robots. Due to the highly non-linear dynamics of the shuttlecock, the stringent demands on robots' dynamic responses, and the convergence difficulties caused by sparse rewards in reinforcement learning, badminton strikes remain a formidable challenge for robot systems. To address these issues, this study proposes DTG-IRRL, a novel learning framework for badminton strikes that integrates imitation-relaxation reinforcement learning with dynamic trajectory generation. The framework demonstrates significantly improved training efficiency and performance, achieving faster convergence and twice the landing accuracy. Analysis of the reward function within a specific parameter space hyperplane intuitively reveals the convergence difficulties arising from the inherent sparsity of rewards in racket sports and demonstrates the framework's effectiveness in mitigating local and slow convergence. Implemented on hardware with zero-shot transfer, the framework achieves a 90% hitting rate and a 70% landing accuracy, enabling sustained humanrobot rallies. Cross-platform validation using the UR5 robot demonstrates the framework's generalizability while highlighting the requirement for high dynamic performance of robotic arms in racket sports.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1649870"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1649870","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Robotic racket sports provide exceptional benchmarks for evaluating dynamic motion control capabilities in robots. Due to the highly non-linear dynamics of the shuttlecock, the stringent demands on robots' dynamic responses, and the convergence difficulties caused by sparse rewards in reinforcement learning, badminton strikes remain a formidable challenge for robot systems. To address these issues, this study proposes DTG-IRRL, a novel learning framework for badminton strikes that integrates imitation-relaxation reinforcement learning with dynamic trajectory generation. The framework demonstrates significantly improved training efficiency and performance, achieving faster convergence and twice the landing accuracy. Analysis of the reward function within a specific parameter space hyperplane intuitively reveals the convergence difficulties arising from the inherent sparsity of rewards in racket sports and demonstrates the framework's effectiveness in mitigating local and slow convergence. Implemented on hardware with zero-shot transfer, the framework achieves a 90% hitting rate and a 70% landing accuracy, enabling sustained humanrobot rallies. Cross-platform validation using the UR5 robot demonstrates the framework's generalizability while highlighting the requirement for high dynamic performance of robotic arms in racket sports.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.