Andrea Nicolò Dell'Acqua, Daniel Scicchitano, Nicola Simoncini, Ilaria Mercanti, Daniela Leuzzi, Silvia Turroni, Luca Corlatti, Simone Rampelli, Martino Colonna, Cinzia Corinaldesi, Marco Candela, Giorgia Palladino
{"title":"Ski Tourism Shapes the Snow Microbiome on Ski Slopes in the Italian Central Alps","authors":"Andrea Nicolò Dell'Acqua, Daniel Scicchitano, Nicola Simoncini, Ilaria Mercanti, Daniela Leuzzi, Silvia Turroni, Luca Corlatti, Simone Rampelli, Martino Colonna, Cinzia Corinaldesi, Marco Candela, Giorgia Palladino","doi":"10.1111/1758-2229.70195","DOIUrl":null,"url":null,"abstract":"<p>Winter sports exert significant anthropogenic pressures on the snow microbiome, affecting the entire alpine ecosystem. The massive usage of artificial snow, human occupation, and the release of xenobiotics like microplastics or ski wax components on ski tracks can profoundly alter snow microbial ecology. Here, we reconstructed the temporal dynamics of the snow microbiome at three sites in the Italian Alps: inside and outside a ski track at the impacted site of Santa Caterina Valfurva and near Cancano lake as an unimpacted control. Using epifluorescence microscopy, 16S rRNA amplicon sequencing, and inferred metagenomics, we found that the snow microbiome inside the track presented a higher load of prokaryotes and viruses. Notably, N<sub>2</sub>-fixing microorganisms from cryospheric environments and host-associated taxa, like <i>Terrisporobacter</i>, <i>Clostridium sensu stricto</i>, <i>Enterococcus</i>, and <i>Muribaculaceae</i>, and the opportunistic pathogen <i>Citrobacter</i> characterised the impacted site. These microorganisms could originate from the river water used to produce artificial snow during winter. Our findings highlight the complexity and multifunctionality of the snow microbiome, where microorganisms with different ecological propensities can coexist, and the detectable impact of ski tourism, which enriches host-associated and xenobiotic-degrading microorganisms. This underscores the need for systematic monitoring and protection of the snow microbiome in the Alpine environment from anthropogenic threats.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70195","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Winter sports exert significant anthropogenic pressures on the snow microbiome, affecting the entire alpine ecosystem. The massive usage of artificial snow, human occupation, and the release of xenobiotics like microplastics or ski wax components on ski tracks can profoundly alter snow microbial ecology. Here, we reconstructed the temporal dynamics of the snow microbiome at three sites in the Italian Alps: inside and outside a ski track at the impacted site of Santa Caterina Valfurva and near Cancano lake as an unimpacted control. Using epifluorescence microscopy, 16S rRNA amplicon sequencing, and inferred metagenomics, we found that the snow microbiome inside the track presented a higher load of prokaryotes and viruses. Notably, N2-fixing microorganisms from cryospheric environments and host-associated taxa, like Terrisporobacter, Clostridium sensu stricto, Enterococcus, and Muribaculaceae, and the opportunistic pathogen Citrobacter characterised the impacted site. These microorganisms could originate from the river water used to produce artificial snow during winter. Our findings highlight the complexity and multifunctionality of the snow microbiome, where microorganisms with different ecological propensities can coexist, and the detectable impact of ski tourism, which enriches host-associated and xenobiotic-degrading microorganisms. This underscores the need for systematic monitoring and protection of the snow microbiome in the Alpine environment from anthropogenic threats.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.